Proceeding
The 2nd International Seminar
“Feed Safety for Healthy Food”

Technical Editors:
Secretariat of The International Seminar
“Feed Safety for Healthy Food”
Proceeding
The 2nd International Seminar
“Feed Safety for Healty Food”

Keynote Speaker:
Director General of Animal Husbandry and Animal Health

Main Speakers:
Prof. Fr. Jurgen Zentek (Berlin, German)
Prof. Abdul Razak Alimon (Malaysia)
Dr. Kevin Liu (Singapore)
Prof. E. R. Ørskov, Ph D., FPAS, FRSE (Scotland)
Proceeding
The 2nd International Seminar
“Feed Safety for Healthy Food”

Subject Editors:
Prof. Dr. Ali Agus
Dr. Ir. Kurnia A. Kamil, M. Agr.Sc., M. Phil.
Prof. Dr. Abdur Razak Alimon
Prof. E. R. Ørskov, Ph D., FPAS, FRSE.
Prof. Fr. Jurgen Zentek
Dr. U. Hidayat Tanuwiria, M.Si.
FOREWORD

We thank the Almighty Allah, the Most Gracious and the Most Merciful that the proceedings of the 2nd International Seminar, the 8th Biannual Meeting and 3rd Congress and Workshop of AINI with the theme “Feed Safety for Healthy Food” organized by Indonesian Association of Nutrition and Feed Science, Faculty of Animal Husbandry, Universitas Padjadjaran on 6 - 7 July 2011 have been completed.

These activities were to collect variety of scientific information with the purpose to collect scientific information about feed for a healthy food, to produce a draft policy on a national feed system and to make a scientific forum for Academics, Researchers, Practitioners of animal husbandry, Health and Policy makers. Scientific papers that were presented either in oral or poster stated in the proceedings.

Thanks go to all those who have provided both moral support or material so that this seminar can be carried out and the proceeding can be issued.

Jatinangor, 6 Mei 2012

Committee
CONTENTS

TECHNICAL EDITORS ... i

KEYNOTE AND MAIN SPEAKERS .. ii

SUBJECT EDITORS ... iii

FOREWORD .. iv

CONTENTS ... v

DIETARY STRATEGIES OF AMMONIA MITIGATION
AT POULTRY FARMS IN INDONESIA
Adrizal, P. Patterson, and Nelson ... 1

EFFECTS OF FEEDING FORAGES LEAF MEAL ON THE
PERFORMANCES OF LAYING HENS
Ahmad Windu Bahari and Osfar Sjofjan ... 18

THE PROTEOGLICAN QUALITY FROM PRODUCT NATURATED OF
CHITOSAN EXTRACT WHICH DIGESTIBILITY AND
HEMATOLOGIC MEASURED
Abun, Denny Rusmana, and Kiki Haetami ... 29

RUMINANTS FEED CHAIN DEVELOPMENT IN INDONESIA:
REVIEWING AND A VALUE ANALYSIS
Achmad Firman, Andre R Daud, Hasni Arief, dan Anita Fitriani 38

BEEF CATTLE DEVELOPMENT: LIVESTOCK PRODUCTION AND
FEEDING SYSTEM AND ANIMAL PERFORMANCE UNDER FARMER
GROUP OF BEEF CATTLE DEVELOPMENT PROGRAM
Akhmad Sodiq .. 44

BLOOD ALBUMIN AND YOLK CHOLESTEROL OF DUCK (Anas sp.)
POLLUTED BY LEAD (Pb) TEXTILE INDUSTRY WASTE
Andi Mushawwir and Diding Latipudin ... 54

FEED SAFETY: ISSUES AND CHALLENGES FOR RUMINANT
INDUSTRY IN INDONESIA
Andre R. Daud, A. Firman .. 59

EFFECT OF UREA ADDITION AND INCUBATION TIME IN PALM FIBER
FERMENTATION ON CHEMICAL COMPOSITION AND GAS
PRODUCTION IN-VITRO
Asih Kurniawati, Chusnul Hanim, and Syaiful Anwar Malik ... 66
PROCEEDING
The 2nd International Seminar
"Feed Safety for Healthy Food"

EFFECT OF COMMERCIAL TANNIN AND Leucaena Leucocephaula ON THE RUMEN M ETHANOGENIC BACTERIA OF CATTLE AND CARABAO
Bambang Suwignyo, Medino G. N. Yebron Jr and Cesar C. Sevilla 74

Saccharomyces cerevisiae IN GOAT FEEDS AFFECTED RUMEN FERMENTATION PATTERN BUT DID NOT AFFECTED METHANE CONCENTRATION
Caribu Hadi Prayitno, Tri Rahardjo Sutadi dan Suwarno 84

EFFECT OF FLUSHING ON SPERM QUALITY IN NATIVE ROOSTERS (Gallus Gallus Domesticus L)
Dadang Mulyadi Salch ... 90

THE EFFECT OF PRE-CONDITION AND WATER SOLUBLE CARBOHYDRATE SOURCES ADDITION ON NAPIER GRASS SILAGE QUALITY
Despal and Permana, I.G. ... 94

ISOLATION AND SCREENING OF FUNGI PRODUCING CELLOBIOSE DEHYDROGENASE: "ENZYMES FOR ANIMAL FEED PREPARATIONS BASED ON ENZYMATIC PROCESS"
Desriani, Bambang Prasetya, Puspita Lisdiyanti, Wiwit Amrinola, Neneng Hasanah, Rivai ... 101

TOXIC DOSE METHANOL EXTRACT AND RESIDUE OF Jatropha curcas L. MEAL ON MICE (Mus musculus)
Dewi Apri Astuti, Sumiati and P. C. Nanlohy .. 106

EFFECT OF INCREASING ENERGY CONTENT IN DIET ON THE PRODUCTIVITY OF SUMATERTA COMPOSITE BREED EWES DURING LACTATION
Dwi Yulistiani .. 115

VARIOUS METHOD OF PROCESSING TO INCREASE THE UTILIZATION OF CASSAVA PEEL AS RUMINANTS FEED
Dwi Yulistiani, I.W. Mathius and Santi Ananda, A.A. 121

THE EFFECT OF TEMULAWAK (Curcuma xanthorrhiza Roxb) AND COMBINATION OF VITAMIN C AND VITAMIN E SUPPLEMENTATIONS ON PERFORMANCE OF HEAT- STRESSED BROILERS
E. Kusnadi, A. Rahmat, A. Djulardi .. 128

EFFECT OF USING BY-PRODUCT OF VIRGIN COCONUT OIL PROCESSING (BLONDO) IN RATION ON DUCK PERFORMANCE
E. Martinelly, Husmaini, A. Salim and R. Lubis .. 135
DETECTION OF ANTIBIOTICS RESIDUAL IN PIG AND CHICKEN PREMIX THROUGH TEST MICROBIOLOGICAL
Ellin Harlia ... 140

DETERMINATION OF UTILIZATION LEVEL OF Curcuma zedoaria Rose.
TO IMPROVE RUMEN ECOLOGY OF MASTITIS DAIRY COWS (in-vitro)
Ellyza Nurdin and Hilda Susanti ... 143

AVAILABILITY OF RICE STRAWS AS FEED RESOURCE
IN SUPPORTING CROP LIVESTOCK SYSTEM (Beef Cattle-Paddy)
BASED ON ECO-FARMING IN JAMBI PROVINCE
Evi Frimawaty, Adi Basukriadi, Jasmal A.Syamsu, T.E.Budhi Soesilo 150

EFFECTS OF SUPPLEMENTAL ORGANIC CHROMIUM AND FUNGI
Gamoderma lucidum ON MILK PRODUCTION AND IMMUNE RESPONSE
IN LACTATING COWS
F.Agustin, T.Toharmat, D.Evvyernie, D.Taniwiryono, S.Tarigan 156

THE EFFECTS OF RUMINAL INFUSION OF UREA TO DRY MATTER AND
CRUDE PROTEIN INTAKES WITH UTILIZATION OF LEUCAENA
(Leucaena leucocephala) IN BUFFALO (Bubalus bubalis Linn.)
F.F. Munier and C.C. Sevilla ... 164

THE REQUIREMENT OF ENERGY AS WELL AS DIGESTIBLE PROTEIN OF
MILKING BEEF COW
F. Rahim .. 172

EFFECTS OF VITAMIN E SUPPLEMENTATION ON PRODUCTION AND
REPRODUCTION PERFORMANCE OF MUSCOPY DUCK (Cairina moschata)
Hafsat, Rosmiaty Arief, and Mulyati ... 179

THE EFFECT OF Hibiscus rosa-sinensis l LEAVES AS SAPONIN
SOURCES ON PROTOZOA POPULATION, GAS PRODUCTION AND
RUMEN FLUID FERMENTATION CHARACTERIZATION IN VITRO
Hendra Herdian, Lusty Istiqomah, Andi Febrisiantos, Sigit Wahyu Hartanto 186

BLOOD MEAL USAGE IN DIET OF AMMONIATED RICE STRAW BASIS
FOR SIMMENTAL CATTLE
Hermon .. 194

RESPONSE OF NATIVE CHICKENS ON FEED FORMULATIONS USING
LOCAL UNCONVENTIONAL FEEDSTUFFS
Heti Resnawati ... 200
EARTHWORMS AS SOURCE OF PROTEIN ALTERNATIVE FOR POULTRY FEED
Heti Resnawati ... 206

EFFECT OF SHEEP URINE ON DRY MATTER YIELD AND FORAGE QUALITY AND CORN YIELD
In Susilawati, Nyimas Popi Indriani, Lizah Khairani, Mansyur, Romi Zahir Islami ... 211

EFFECT OF FEED RESTRICTION ON FEED EFFICIENCY, CARCASS QUALITY AND DIGESTIVE ORGANS CHARACTERISTICS OF BROILER J.J.M.R. Londok, B. Tulung, Y.H.S. Kowel, and John E.G. Rompis …………………. 216

STRATEGIC UTILIZATION OF RICE STRAW AS FEED FOR RUMINANTS IN THE BANTANG DISTRICT: SWOT ANALYSIS APPROACH Jasmal A. Syamsu and Hasmida Karim ... 227

THE EFFECT OF PHYTATE IN DIET AND LEAD (Pb) IN DRINKING WATER ON LEAD OF BLOOD, MEAT, BONE AND EXCRETA OF STARTING DUCK Kamil K.A., R. Kartasudjana, S. Iskandar ... 236

THE EFFECT OF PHYTATE IN DIET AND LEAD (Pb) IN DRINKING WATER ON HEMATOLOGICAL INDICATORS OF STARTING DUCK Kamil, K.A. .. 244

PEMANFAATAN BIO-MOS (Mannan oligosakarida) HASIL BIOPROSES LIMBAH INTI SAWIT DALAM PAKAN IKAN NILA Kiki Haetami, Junianto, dan Abun .. 250

THE ADDITION OF COCOA (Theobroma cacao) POWDER IN MILK FERMENTED TO REDUCE THE URIC ACID LEVEL ON HYPERLIPEIDEMI RATS Lovita Adriani ... 260

THE EFFECT OF SUPPLEMENTATION FERMENTED KOMBUCHA TEA ON URIC ACID LEVELS IN THE DUCK BLOODS Lovita Adriani ... 266

IMPROVING THE NUTRIENT QUALITY OF JUICE WASTE MIXTURE BY STEAM PRESSURE FOR POULTRY DIET Maria Endo Mahata, Yose Rizal and Guoyao Wu ... 270

PERFORMANCES AND HAEMATOLOGY CHARACTERISTICS OF BROILER CHICKS FED VARYING MODIFIED PALM KERNEL CAKE M Tafsin, ND Hanafi, Z Siregar ... 277
EFFICACY OF GARLIC EXTRACT ON PERFORMANCE AND FAT DEPOSIT OF BROILER
Merry Muspita Dyah Utami ... 284

IMPROVING THE QUALITY OF PALM KERNEL CAKE CONTENT AS POULTRY FEED THROUGH FERMENTATION BY COMBINATION WITH VARIOUS MICROBE, AND HUMIC ACID DOSAGE
Mirnawati, Yose Rizal, Yetti Marlida and I. Putu Kompiang 290

EFFECTS OF PLANT PROPORTIONS OF Panicum maximum AND Centrosemapubesceens APPLIED WITH PHOSPHATE FERTILIZERS AND DEFOLATED AT DIFFERENT INTERVALS ON DRY MATTER YIELD, YIELD ADVANTAGE AND NUTRITIONAL QUALITY
Muhammad Rusdy .. 301

THE FORAGE COMPOSITION OF SHEEP AND CUT AND CARRY SYSTEM CAPACITY IN THE PALM GARDENS SUB CIBADAK, DISTRICT SUKABUMI
Muhammad Setiana .. 308

DETERMINATION OF UTILIZATION OF LEVEL SHRIMP BY PRODUCT ON BROILER PERFORMANCE
Muhtarudin, Tintin Kurtini, Dian Septinova .. 311

ENZYME SUPPLEMENTATION ON LOCAL FEEDS (PELLETED OR MASH) FOR BROILER CHICKENS GROWTH: TECHNOLOGY INNOVATION TO SUPPORT FOOD SUSTAINABILITY
N.G.A. Mulyantini .. 315

PENGGUNAAN LUMPUR SAWIT FERMENTASI DALAM PAKAN TERHADAP PROFIL DARAH DAN LEMAK AYAM BROILER
Ning Iriyanti dan Bambang Hartoyo .. 319

THE EFFECT OF FEEDING PRODUCT FERMENTED WITH Monascus purpureus ON PERFORMANCES AND QUALITY EGG QUALITY
Nuraini, Sabrina dan Suslina A Latif .. 327

THE EFFECT OF PHYTOTOGENIC FEED ADDITIVES FOR BROILER CHICKEN
Nurita Thiasari and Osfar Sjofjan ... 334

EFFECT OF CORN MEAL SUBSTITUTION WITH NOODLE WASTE AND FORTIFIED NOODLE WASTE IN DIET ON BROILER PERFORMANCE
Osfar Sjofjan and Ahmad Windu Bahari .. 342
SUPLEMENTATION Curcuma longa OR Curcuma xanthorrhiza ON CARCASS TRAIT AND CHOLESTEROL CONTENT OF BROILER
R. Mutia and Sumiati ... 349

SUPPLEMENTATION Curcuma longa OR Curcuma xanthorrhiza ON BROILER PERFORMANCE
R. Mutia and Sumiati .. 355

INFLUENCE of PARE FRUIT EXTRACT (Momordica charantia L.) TO VISCERAL FAT WEIGHT, FEMUR MUSCLE AND LIVER MIDDLE-AGED FEMALE MICE SWISS WEBSTER
Rita Shintawati, Hernawati .. 361

EFFECTIVITY OF SILAGE AND PROBIOTIC ON THE RUMEN METABOLISM OF ONGOLE CATTLE IN VIVO EXPERIMENT
Ridwan, R. Y. Widyastuti, S. Budiarti, A. Dinoto .. 368

EFFECT OF EDAMAME SOYBEAN ISOFLAVONE CONCENTRATE ON BROILERS GROWTH PERFORMANCE
Rosa Tri Hertamawati, Ujang Suryadi dan Dadik Pantaya .. 378

THE EFFECT OF ADDING “TAPE SINGKONG” (FERMENTED CASSAVA) JUICE ON THE CHARACTERISTICS OF FERMENTED MILK
Salam N. Aritonang, Elly Roza, Sri Novalina .. 383

PROTEIN MOLECULAR STRUCTURE OF CANOLA SEED AFFECTED BY HEAT PROCESSING METHOD IN RELATION TO PROTEIN AVAILABILITY: AUTOCLAVED HEATING VS. DRY HEATING: A NOVEL APPROACH
Samadi .. 389

THE EFFECT OF CONDENSED TANNIN OF MIMOSA BARK ADDED TO SOYBEAN MEAL ON IN VITRO GAS PRODUCTION
Siti Chuzaemi, Mashudi .. 402

In vitro RUMEN ENZYME ACTIVITIES ON DIFFERENT RATIO OF FORAGE AND CONCENTRATE SUPPLEMENTED BY LERAK (Sapindus rarak) EXTRACT
Sri Suharti, Dewi April Astuti, Elizabeth Wina, K.G. Wiryawan and Toto Toharmat .. 408

THE USE OF Squilla empusa FERMENTATION IN THE DIET LAYERS THE EFFECTS YOLK EGGS
Sri Suhermiyati, Roesdiyanto, Winarto Hadi .. 415
TRANSFER OF OMEGA-3 PROTECTED AND L-CARNITINE IN THE DIETS OF FERMENTED RUBBISH MARKET ITS EFFECT ON FATTY ACID COMPOSITION OF CHEMIST SIMENTAL MEAT CATTLE
Sudibya ... 420

THE EFFECT OF CHEMICAL AND BIOLOGICAL TREATMENTS ON WEIGHT LOSS, NUTRIENTS CONTENT, TRYPSIN INHIBITOR AND LECTIN ACTIVITIES OF Jatropha curcas L. MEAL
Sumiati, D. A. Astuti, and R. Rahmasari .. 430

FORAGES FOR GOAT PRODUCTION UNDER CITRUS ECOSYSTEM IN NORTH SUMATRA
Tatang M. Ibrahim .. 438

ENVIRONMENTAL MANIPULATION MICROINTESTINAL USING LECTIN Jatropha SEED MEAL AS MEDIA ATTACHMENT LACTIC ACID BACTERIA AND ITS INFLUENCE ON THE HAEMATOLOGICAL PROFILE OF POULTRY
Titin Widyastuti and Caribu Hadi Prayitno .. 447

THE EFFECT OF MIXED COMMERCIAL YEAST CULTURE FERMENTATION FOR CASSAVA WASTE ON ITS PROXIMATE COMPONENTS
Tri Agus Sartono, Nurwantoro, and Joelal Achmadi ... 451

CORRELATION BETWEEN THE PUBLIC UNDERSTANDINGS OF AVIAN INFLUENZA WITH LEVEL OF WILLINGNESS TO CONSUME POULTRY PRODUCT
Unang Yunasaf dan Adjat Sudradjat M. .. 456

UTILIZATION OF UREA AND FISH MEAL IN COCOA POD SILAGE BASED RATIONS TO INCREASE THE GROWTH OF ETAWAH CROSSBRED GOATS
Wisri Puastuti and Dwi Yulistiani ... 463

ACTIVITY OF CELLULASE FROM SELECTED ACTINOMYCETES Streptomyces rimosus sp. ID05-A0911
Wulansih Dwi Astuti, Roni Ridwan, Yantiyati Widyastuti .. 470

IMPROVING THE NUTRIENT QUALITY OF JUICE WASTES MIXTURE THROUGH FERMENTATION BY USING Trichoderma viride FOR POULTRY DIET
Yose Rizal, Maria Endo Mahata and Indra Joli .. 482
THE EVALUATION OF FERMENTATIVE CAPABILITY OF CELLULOTIC FUNGI FROM COW RUMEN FLUID AGAINST DECREASE IN CRUDE FIBER AND READY AVAILABLE CARBOHYDRATE IN CASSAVA PEEL WASTE
Yuli Andriani *, Ratu Safitri **, Abun *** ... 492

THE EFFECT OF WASHING AND FERMENTATION OF CASSAVA PEEL ON HCN CONCENTRATION AND RUMEN VFA PRODUCTION
Yuni Sura, Indyah, Andriyani Astuti ... 502

PARITY RELATIONS WITH THE MINERAL CONTENT OF BLOOD ON THE PARENT CATTLE ARTIFICIAL INSEMINATION (AI) IN WEST SUMATRA
Zaituni Udin and Zeslin BP ... 508

EFFECT OF FEEDING A TRADITIONAL TOWARDS THE DEVELOPMENT OF LIVESTOCK REPRODUCTION BUFFALO THE DISTRICTS OF KAMPAR PROVINCE RIAU
Zespin BP, Ferry Lismanto Syaiful and Yendraliza 516

EFFECT OF SAPONIN (Sapindus rarak fruit) ON MEAT CHOLESTEROL FROM BROILER CHICKENS
Chusnul Hanim, Lies Mira Yusiat, and Rahma Fitrastuti 520

BODY WEIGHT GAIN OF ETAWWA CROSSBREED GOATS MALE FED LOCAL FEED IN WEST JAVA
Denie Heriyadi .. 526

TESTING FEED OF SUGAR CANE PULP AMMONIATION WITH UREA AND AMMONIUM SULFATE ADMINISTRATION BY MEASURING TOTAL VFA CONCENTRATION AND BACTERIA AND PROTOZOA POPULATION OF SHEEP RUMEN FLUID
Diding Latipudin, An-An Yulianti, Ronnie Permana 532

UTILIZED BIO-MOS (Mannan Oligosaccharide) FROM BIOPROCESSED OF PALM KERNEL CAKE ON FEED OF NILE TILAPIA
Kiki Haetami, Junianto, and Abun ... 542

UTILIZATION OF ENCAPSULATED EARTHWORM EXTRACT (Lumbricus rubellus) AS FEED ADDITIVE ON BROILER PERFORMANCE AND MEAT QUALITY
Lusty Istiqomah, Hardi Julendra, Ema Damayanti, Septi Nur Hayati and Hendra Herdian .. 550
PERFORMANCES AND HAEMATOLOGY CHARACTERISTICS OF BROILER CHICKS FED VARYING MODIFIED PALM KERNEL CAKE
M Tafsin, ND Hanafi, Z Siregar ... 559
EFFECT OF KOMBUCHA FERMENTATION ON HEMATOLOGY STATUS AND CARCASS WEIGHT IN DUCK
Novi Mayasari, Lovita Adriani and Angga Kurniawan 566

UTILIZATION OF VEGETABLE CROPS RESIDUES AS ELEPHANT GRASS SUBSTITUTE IN COMPLETE FEED ON BODY COMPOSITION OF SHEEP
Umi Muyasaroh, Limbang K Nuswantara dan Eko Pangestu 572

THE EFFECT OF WASHING AND FERMENTATION OF CASSAVA PEEL ON THE CONCENTRATION OF HCN AND RUMEN VFA PRODUCTION
Yuni Suranindyah, Andriyani Astuti ... 577

AUTHOR INDEKS .. 583
THE ADDITION OF COCOA (*Theobroma cacao*) POWDER IN MILK FERMENTED TO REDUCE THE URIC ACID LEVEL ON HYPERLIPIDEMI RATS

Lovita Adriani

Animal Husbandry Faculty, Universitas Padjadjaran, Bandung-Indonesia
Corresponden Email: lovita_yoghurt@yahoo.co.id

ABSTRACT

Chocolate can undergo fortification process to be added into other food such as probiotic yoghurt. Fortification is usually regarded as the deliberate addition of one or more micronutrients to particular foods, so to increase the intake of these micronutrients in order to correct or prevent a demonstrated deficiency and provide a health benefit.

The study object was to investigate the effect of addition cocoa powder in milk fermented milk mixture to reduce the uric acid level on hyperlipidemia rats.

In this research was used a Completely Randomized Design experimental method with five treatments, i.e. R0 = control, high fat diet, R1 = high fat diet + 4 ml yoghurt, R2 = high fat diet + 0,35 g cocoa, R3 = high fat diet + 4 ml yoghurt + cocoa 0,23 g, R4 = high fat diet + 4 ml yoghurt + cocoa 0,35 g, R5 = high fat diet + 4 ml yoghurt + cocoa 47 g; each treatment was repeated five times. From the statistical analysis it was indicated that the effect from the addition of cocoa and probiotic in ration, showed a significant effect (P<0.05) on decreased the uric acid level on hyperlipidemi rats.

The results showed that addition cocoa into probiotic in all treatment has reduced the uric acid level, i.e. R1= 34,03%, R3= 29,9 %, R4= 29,9 %. The highest for reducing uric acid is R5= 37,11%, and the lowest is R2= 14,03%, compare to control

Keywords: hyperlipidemi rat, probiotic, cocoa, uric acid

INTRODUCTION

Cocoa was named *Theobroma* by Linnaeus, which means 'food of the gods'. It was so called from the goodness of its seeds (Grieve M. A., 2010). Cocoa beans are used in chocolate production. Chocolate/Cocoa contains flavonoids, a type of polyphenol antioxidant. Antioxidant can reduce cancer by attacking actively oxygen compounds which are carcinogen to our body. Some researchers found that chocolate may lower blood pressure of people with hypertension. Beside that, it also can reduce LDL cholesterol level (Gloria Tsang R, 2006). Flavonoids in cocoa are flavanols (epicatechins and catechins), anthocyanins and proanthocyanidins. The cocoa epicatechins and procyanidins make stabilize the overall blood sugars. Consume smaller amounts of very dark chocolate (providing 30 mg of polyphenols per day) for a much
longer period of time, there is an improvement in endothelial cell relaxation, but without a reduction of blood pressure.

Probiotic yoghurt is basically yoghurt with live and active cultures. It can promote and maximize digestion of certain nutrients in the human body. Yoghurt contains such as: energy, protein, fat, carbohydrates, minerals and has a fairly complete content of vitamins are: vitamin A, B complex, B1 (thiamin), B2 (riboflavin), B6 (pyridoxine), B12 (cyanocobalamin), vitamin C, vitamin D, E, folic acid, nicotinic acid, pantothenic acid, biotin and choline (Lovita, A, 2005). Normally, the body eliminates enough uric acid in the urine or through the intestines to keep its concentration at a healthy level. Only 5% of those with hyperuricaemia develop clinical symptoms of gout. Uric acid is an end-product compound from the breakdown of purines. About two thirds of purine is generated from within the body, while one third comes from the diet (Fam 2005).

Yoghurt can help to reduce uric acid levels. Also help to reduce the risk of gout. Uric acid is a divalent acid, but the second dissociation constant is so small that at around pH 7 only the monobasic salts are formed. Uric acid is a purine synthesized by a series of reactions that also are used for synthesis for other purine such as adenine and guanine, which are component of DNA. The final step the uric acid synthesis is controlled by the enzyme xanthine oxidase, a molybdenum containing enzyme. Xanthine oxidase is an enzyme that responsible for converting purine became uric acid. The most important structure in purine biochemistry is the nucleotide consisting of a purine base, ribose or deoxyribose, and phosphoric acid, but free hypox.

Theobromine, serotonin, in cocoa give the additional energy. Cocoa also stabilizes blood sugar and makes people feel stronger more quickly.

Raw cocoa contains calcium, phosphorus, iron, thiamine (vit B1), riboflavin (vit B2), niacin, nicotinamide (vit B3), pantothenic acid (vit B5), pyridoxine (vit B6), ascorbic acid (vit C), magnesium, copper, zinc, manganese, and vitamin E.

Food fortification is usually regarded as the deliberate addition of one or more micronutrients into particular foods to increase the intake of these micronutrients in order to correct or prevent a demonstrated deficiency and provide a health benefit (Frederic W. et al, 2006). Uric acid is the final product or waste products resulting from metabolism / breakdown of purines. Uric acid is antioxidants in animals, but when amounts in blood increase or reach the saturation level will experience a crystallization. The content of uric acid on rat uric acid in, whereas in female mice at 2.92 ± 0.241 mg / dl (Taconic Technical Laboratory, 1998 in Kusmiyati, 2008).

Uric acid is a derivate of purine alkaloid compounds (xanthine). Uric acid are semisolid organic compounds consisting of carbon, oxygen, nitrogen, and hydrogen with the formula C5H4N4O3, which is the end of protein and purines metabolism.

Xanthine oxidase catalytic is an enzyme that catalyzes hypoxanthin and xanthin to uric acid, which is a purine degradation pathway, in normal tissue. xanthin oxidase is dehydrogenase. In normal tissue, xanthin oxidase is a dehydrogenase that uses NAD as an electron acceptor in the purine degradation pathway.
MATERIALS AND METHODS

In this experiment was used animal sample, which consisted of 36 adult male Wistar rats. Those rats are about 2-3 months old and weigh about 200-250 gram. They get treatment for 37 days, which consisted of 2 days adaptation, 7 days of pre-condition with hypercholesterol feed, and 28 days of treatment. In this study, was used Completely Randomized Design. The 36 rats are randomly divided into 6 groups which consists of 3 rats in each group, and repeated twice for each treatment.

At the end of the treatment, the sufficient amount of rat blood was taken by cutting the edge of its tail to analyze the uric acid level using the microhematoctite pipet.

Material Used In Experiment

This study used the fortified cocoa \(\text{(Theobroma cacao)} \) powder in probiotic yoghurt as a preventive medicine to reduce the uric acid level in rats. The cocoa powder was obtained from pure cocoa from Ceres, a commercial food factory in Bandung. Rat's standard food is pellet and aquadest, also probiotic yoghurt is taken from product of Lovita Yoghurt Unpad.

The cocoa concentration of 12%, 15% and 18% were used, along with a constant amount of probiotic yoghurt. According to Lovita, Unpad, a person should consume about 250 ml per day. Those values are converted to be given to the rats which weigh 200 gram. Based on the comparison of body weight of human towards the rats, the dosage for the rats is 4 ml per day. The concentration of probiotic yoghurt that will be given to the rats will be calculated following the research of Lovita (2005)

Normal consumption of cocoa powder for human according to the research of Ochanomizu University, Japan, is from 13 g – 36 g per day. Based on the research, was decided to use 3 different concentrations, each value 13 g, 19.5 g, and 26 g. Those values are converted to be given to the rats based on the comparison of body surface areas of human towards the rats:

\[
\text{Rat dosage (200 gram)} = \text{Human dosage (70 kg) \times body surface area comparison of rat to human (conversion factor)}
\]

\[
= 13g/day \times 0.018 = 0.23 \text{ g/day}
\]

\[
\text{Empirical concentration} = 0.23 \text{ g} \rightarrow 0.23 \text{ mL}
\]

\[
= \frac{0.23}{4} \text{ mL} \times 100 = 5.8 \%
\]

With the same formula, the empirical concentration for dosage of 19.5 g is 8.8%, and for dosage of 26 g is 11.8%. This concentration was given to the rat in the study. Feed composition followed the theory of Reeves, et al. (1993), where a value of 1% cholesterol was added for hypercholesterolemic condition.

The formula treatments are:

- Group 1: hypercholesterol feed
- Group 2: hypercholesterol feed + probiotic yoghurt 4 ml
- Group 3: hypercholesterol feed + cocoa 0.23 gr
- Group 4: hypercholesterol feed + probiotic yoghurt 4 ml + cocoa 0.23 gr
- Group 5: hypercholesterol feed + probiotic yoghurt 4 ml + cocoa 0.35 gr
- Group 6: hypercholesterol feed + probiotic yoghurt 4 ml + cocoa 0.46 gr
RESULTS AND DISCUSSIONS

Effect Treatments on Uric Acid Level

Table 1. Effect of treatment on uric acid level (mg/dl)

<table>
<thead>
<tr>
<th></th>
<th>R0</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>ab</td>
<td>n</td>
<td>ab</td>
<td>ab</td>
<td>b</td>
</tr>
<tr>
<td>4.85</td>
<td>3.2</td>
<td>4.17</td>
<td>3.4</td>
<td>3.4</td>
<td>3.05</td>
<td></td>
</tr>
</tbody>
</table>

R0 = high fat diet
R1 = high fat diet + 4 ml yoghurt ,
R2 = high fat diet + 0.35 g cocoa,
R3 = high fat diet + 4 ml yoghurt + cocoa 0.23 g
R4 = high fat diet + 4 ml yoghurt + cocoa 0.35 g
R5 = high fat diet + 4 ml yoghurt + cocoa 47 g

In Table 1 and Figure 1, showed that the level of uric acid in tested animal blood was reduced after consuming mixed or fortified cocoa in probiotic yoghurt. The effect almost the same for consuming only cocoa (R2) and R0 (control). R1 (consuming only probiotic), R3 (probiotic with little dose cocoa) and R4 (probiotic with medium dose cocoa) seemed better than R0 and R2, for decreasing uric acid level. Consume only yoghurt probiotic is better than consume only cocoa for reducing uric acid level. R5 showed significantly different compared to all treatments, which means that the use of cocoa mixed with yoghurt can reduce the uric acid levels than using cocoa or yoghurt separately. The main contributors for reducing uric acid is antioksidan. The cocoa’s epicatechins and procyandins make compounds inhibit the activity of the reaction of xanthine oxidase and superoxide so that the levels of uric acid reduce (Pitman JR, and Bross MHL, 1999) Polyphenol compounds is also a diuretic, so it will dissolve and uric acid in urine wasted, like work allopurinol in lowering uric acid level using an inhibitory pathway enzyme xanthin oxidase.
CONCLUSION

1. Consuming mixed cocoa in probiotic yoghurt proved to be better than only the probiotic yoghurt or cocoa itself in reducing the level of uric acid.
2. Consuming only cocoa is almost the same with control, only reduce 14.03% uric acid level.
3. R1, R3, R4 mixed cocoa in yoghurt can reduce uric acid until 34.03%, 29.9%, 29.9% respectively.
4. R5 is the highest for reducing uric acid level until 37.11 % compare to control.

REFERENCES

Lovita, A. 2005. Probiotic Bacteria As A Starter and It’s Implication Effect to Quality Of Yoghurt Gastrointestinal Tract Ecosystem and Blood Chemistry in Mice. Disertation. Universitas Padjadjaran ; Sumedang

Pittman JR. and Bross MH., 1999 Pittman JR, Bross MH. Diagnosis and management of gout. Am Fam Physician. 1999 Apr 1;59(7):1799-806
