The Influence of Anti-thyroid Drug Discontinuation to the Therapeutic Efficacy of 131I in Hyperthyroidism

A. Hussein S. Kartamihardja and Stepanus Massora

Department of Nuclear Medicine and Molecular Imaging
Faculty of Medicine, Universitas Padjadjaran
Dr. Hasan Sadikin General Hospital, Bandung, Indonesia

(Correspondence should be addressed to A.H.S. Kartamihardja; Email: husseinsundawa@yahoo.com)

Abstract

Background: The influence of anti-thyroid drugs (ATDs) on the therapeutic efficacy of radioactive iodine in hyperthyroidism is still controversial. The aim of this study was to evaluate the effect of ATDs discontinuation to the therapeutic efficacy of 131I in hyperthyroidism patients with long-term ATD treatment.

Subject and methods: Retrospective study was done to 39 subjects with hyperthyroidism who had been treated by the dose of 300 MBq radioactive iodine. The subjects were divided into three groups: group I (n=14) had been using ATDs for more than one year and discontinued more than three days; group II (n=14) had been using ATDs for more than one year but discontinued only for three days or less and the group III (n=11) has never been used any ATD before radioactive iodine treatment.

Results: There was a significant difference in the therapeutic efficacy after three months of radioactive iodine treatment between the group I and group II (p=0.018), the group II and group III (p=0.017) but not between the group I and group III (p=1.0). There was no difference on the therapeutic efficacy was observed between three groups at six months after radioactive iodine therapy (p=0.143).

Conclusion: Administration of ATDs more than one year without discontinued decreased response of radioactive iodine treatment in three months follow up. Discontinuation of ATDs for more than three days before radioactive iodine treatment is recommended.

Keywords: Anti-thyroid drug, radioactive iodine, hyperthyroidism.

Introduction

Graves’ disease (GD) is the most common cause of hyperthyroidism. It is an autoimmune disorder in which thyroid-stimulating hormone receptor antibodies can cause the thyroid gland to synthesize large amounts of thyroid hormones. The three treatment modalities are ATDs, radioactive iodine, and thyroidectomy. Radioactive iodine is increasingly used as the treatment of choice in most patients with Graves’ hyperthyroidism because of its ease, low cost, and low rate of complications and relapse. [1, 2]

Certain medications and other conditions may influence the result of...
radioactive iodine therapy such as ATDs, uncontrolled iodine intake from food or medication, radiographic contrast materials, and amiodarone. Many studies warned that the medications or substances should be stopped before radioactive iodine therapy. Several treatment protocols concerning ATD withdrawal before radioactive iodine therapy have been reported.\[^{[1,3]}\]

Three ATDs that are often used are propylthiouracil (PTU), methimazole (MMI) and carbimazole (CMZ). They are used either as a primary therapy for a certain period of time while awaiting remission of the disease or as pretreatment prior to radioactive iodine treatment. The emergence of the opinion to provide antithyroid drugs as the treatment of choice is often due to fear of radiation effects. Many patients get antithyroid therapy for many years before finally deciding to get radioactive iodine.\[^{[4,5,6,7]}\]

The influence of ATDs on the response of radioactive iodine treatment is still controversial. Many studies have shown a correlation between antithyroid drugs treatment and failure rate of radioactive iodine therapy, but others shown no correlation. Society of Nuclear Medicine in procedure guideline for therapy of thyroid disease with 131Iodine suggested that the ATD should be discontinued for at least 3 days before the radioactive iodine therapy is given.\[^{[3,6,8,9]}\]

Most of hyperthyroidism patients refer to our nuclear medicine department for receipt oral anti-thyroid drugs before radioactive iodine therapy. The time interval between oral anti-thyroid drugs discontinuation and radioactive iodine therapy was different in each patient. We have no experience how long the appropriate time of ATD discontinuation before radioactive iodine therapy.

The aim of this study was to evaluate the effect of ATD discontinuation to the therapeutic efficacy of 131I in hyperthyroidism patients with longterm ATD treatment. This study was also to define the optimal time interval between anti-thyroid drug discontinuation and radioactive iodine therapy.

Material and Methods

Subjects

The study approved by the institutional ethical committee. Subjects were patients with hyperthyroidism who treated with radioactive iodine at our nuclear medicine department from January 2010 to December 2011. Inclusion criteria were as follows: hyperthyroidism patients, who received 300 MBq of radioactive iodine, treated or untreated with ATDs for one year or more, no history of smoking, diffuse goiter, and complete of medical record data for 6 months of monitoring. Hyperthyroidism patients age more than 14 year.

Methods

Subjects were divided into three groups: group I (n=14) were subjects that ATD discontinued more than three days; Group II (n=14) were discontinued only for three days or less, and group III (n=11) was never used any ATD before radioactive iodine therapy (control group). Baseline evaluation included evaluation of thyroid scintigraphy, thyroid hormone (T3 and free T4) and thyroid stimulating hormone sensitive (TSHs) on the day of radioactive iodine administration. T3, free T4 (FT4), and TSHs serum level were measured two times in 6 months after 131I treatment. Subjects were considered to be cured when they developed euthyroidism or permanent hypothyroidism. Euthyroidism was defined as T3, FT4, and TSHs serum level within the normal range. Hypothyroidism was defined as low thyroid hormone and increased TSHs. Cured rates were observed in 3 and 6 months after radioactive iodine.
Statistical analysis

Baseline subjects characteristic were expressed as mean ± SD for quantitative variables and ratio for qualitative variables. The baseline characteristics of the three groups were compared by nonparametric Mann-Whitney test or ANOVA for quantitative variables, as respectively. Differences of cure rate between the three groups (Group I and II, II and III, I and III) at 3 months and 6 months were compared with chi-square and the Fisher Exact test.

Result

A total of 39 subjects (8 men and 31 women) were included in this study. Subjects characteristic in each group are shown in Table 1.

Prior to I-131 treatment, the characteristics of three groups did not differ with regard to age and gender (p=0.629; p=0.104) but differ to fT4 value (p=0.013). Free T4 in group I and III were higher than group II. There were no significant difference between group I and group II in duration of disease (p=0.227).

In 3 months follow up after radioactive iodine therapy, 8 subjects (57%) of group I showed good response, 2 subjects (14%) of group II, and 7 subjects (64%) of group III. Six subjects (43%) of group I, 12 subjects (86%) of group II, and 4 subjects (36%) of group III had no response. Six months after treatment showed a good response in 11 subjects (79%) of group I, 8 subjects (57%) of group II, 10 subjects (90%) of group III. Only 3 subjects (21%) of group I, 6 subjects (43%) of group II, and 1 subject (10%) of group III were require and repeat radioactive iodine therapy [Table 2].

Significant difference between the group I and the group II (p=0.018), group II and group III (p=0.017), but no significant difference between group I and group III (p=1.0) in three months after radioactive iodine therapy. There was no difference in cure rate was observed between the group I and the group II (p=0.419), group II and group III (p=0.09), between group I and group III (p=0.604) at 6 months after radioactive iodine therapy [Figure 1].

Discussion

The effect of oral ATD on radioactive iodine therapy had been studied for a long time, but until now it is still controversial. The result of this study showed that radioactive iodine therapy provides maximum results in subjects who have not received anti-thyroid drugs prior to radioactive iodine therapy or in subjects who have stopped antithyroid drugs for more than 3 days prior to radioactive iodine therapy. This indicates that the effectiveness of radioactive iodine therapy in hyperthyroidism patients taking ATDs more than 1 year can be improved by discontinuation of ATDs more than 3 days.[10,11]

Some studies suggested that the ATD may have a protective effect which lead to lowering the eff affective half-life and uptake of radioactive iodine in thyroid gland. Thus, the results of this study supported by studies of Hancock et al., meta-analysis study by Andrade et al. and Walter et al., which advocated termination of ATDs oneweek prior to radioactive iodine therapy [3,12,13,14].

Study by Tuttle et al., was done to compare hypothyroidism patients with and without propylthiouracil (PTU) treatment prior to radioactive iodine therapy. They concluded that the use of PTU influences the successful
of radioactive iodine therapy, although PTU was stopped approximately for 4 days. They also said that in these conditions, the successful of therapy can still be improved by increasing the dose of radioactive iodine. In this study, the therapeutic dose of 131I was uniformly to avoid bias which may occur and influence the results of this study.\[^{15}\] We used 300 MBq of radioactive iodine based on our empirical experience for fixed low dose and consideration that average body weight of people in our country less than European or American. Several studies that compared efficacy of differences dose of radioactive iodine included 200 MBq, 259 MBq, less than 370 MBq, or greater than 370 MBq were done.\[^{16,17,18}\]

The study was done by Imseis et al. to evaluate the influence of propylthiouracil (PTU) and methimazole (MMI) to therapeutic efficacy of 131I in hyperthyroidism that pretreated with. The study concluded that the cure rate of 131I therapy was significantly reduced after pretreatment with PTU, even when it was discontinued for 5–55 days before radioactive iodine therapy. Similar premedication with MMI did not interfere the response to 131I therapy.\[^{19}\] This study was supported by Andrade et al. which shown that there was no difference after radioactive iodine treatment with or without MMI pretreated. Different study from Shivaprasad et al. (2015) concluded that pretreated with Carbimazole (CMZ) have lower efficacy with 131I therapy compared to nonpretreated patients. This study did not analyze separately for each ATD in the baseline, therefore it could not identify the difference of therapeutic efficacy of 131I after pretreatment by each ATD. This study also was not include the goitre size and thyroid uptake which could be potential for heterogeneity in the baseline of this study.\[^{19,20,21}\]

Conclusion

Administration of oral anti-thyroid drugs (ATDs) more than one year without withdrawal more than three days decreased response of radioactive iodine therapy in 3 months following up. Study with a larger number of subjects, separately for each ATD pretreatment and more attention to confounding factors such as goitre size and thyroid uptake is recommended.

REFERENCES

Table 1. Subjects characteristic

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>Group I</th>
<th>Group II</th>
<th>Group III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of subjects</td>
<td>14</td>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td>Gender (male/female)</td>
<td>4/10</td>
<td>2/12</td>
<td>2/9</td>
</tr>
<tr>
<td>Age (mean± SD) (range)</td>
<td>38.9 ± 11.3 (20-54)</td>
<td>44.7 ± 10.2 (29-59)</td>
<td>34.7 ± 13.1 (19-60)</td>
</tr>
<tr>
<td>fT4 (mean ± SD)</td>
<td>5.8 ± 3.87</td>
<td>2.77± 1.96</td>
<td>4.53± 1.80</td>
</tr>
<tr>
<td>Duration of disease (months) (mean ±SD)</td>
<td>50.14± 40.16</td>
<td>69± 31.79</td>
<td>4± 2.89</td>
</tr>
</tbody>
</table>

SD: Standard deviation; fT4: free thyroxine

Original table

Table 2. Cure rates in 3 and 6 months after radioactive iodine therapy.

<table>
<thead>
<tr>
<th>Group</th>
<th>Follow up 3 months</th>
<th>Follow up 6 months</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cured %</td>
<td>Treated 2nd therapy %</td>
<td>Cured %</td>
</tr>
<tr>
<td>I</td>
<td>8 57</td>
<td>6 43</td>
<td>11 79</td>
</tr>
<tr>
<td>II</td>
<td>2 14</td>
<td>12 86</td>
<td>8 57</td>
</tr>
<tr>
<td>III</td>
<td>7 64</td>
<td>4 36</td>
<td>10 90</td>
</tr>
</tbody>
</table>

1 table
Figure 1. The outcomes of radioactive iodine therapy in percentage and P value.

Original figure