Intra- and Inter-chain polaron diffusion in regio-random polythiophene studied by muon spin relaxation

Physica B 405, S381 (2010)

Risdiana, Fitrilawati, R. Hidayat, A. A. Nugroho, R. E. Siregar, M. O. Tjia, I. Watanabe
The scope of Physica B comprises all condensed matter physics, including both experimental and theoretical work. Papers should contain a new experimental, calculated, or theoretical result of which the physics is properly discussed.

The requirement of the presence of some new condensed matter physics means that typical materials science papers which, for instance, mainly concern a new more efficient or cheaper preparation method of a material or the optimization of an already known physical property of a material with the aim of application, fall outside the scope of Physica B.

Note: Plagiarism, or copying text or results from other sources, is unethical behavior and is not tolerated at Physica B. All manuscripts submitted to Physica B will be checked for originality using the CrossCheck database. For more information on CrossCheck please visit http://www.crossref.org/crosscheck.html

Benefits to authors
We also provide many author benefits, such as free PDFs, a liberal copyright policy, special...
Physica B: Condensed Matter Editorial Board

Editors
P.E. Brommer †
Badhoevedorp, the Netherlands

K.H.J. Buschow
Van der Waals - Zeeman Instituut, Universiteit van Amsterdam, Postbus 94485, 1090 GL, Amsterdam, Netherlands Email K.H.J. Buschow

F.R. de Boer
Van der Waals - Zeeman Instituut, Universiteit van Amsterdam, Postbus 94485, 1090 GL, Amsterdam, Netherlands Email F.R. de Boer

L. Degiorgi
Lab. fur Festkörperphysik, Eidgenössische Technische Hochschule (ETH) Zürich, CH-8093, Zürich, Switzerland Email L. Degiorgi

R. Jochemsen
Kamerlingh Onnes Laboratorium, Universiteit Leiden, P.O. Box 9504, 2300 RA, Leiden, Netherlands Email R. Jochemsen

H. Wada
Dept. of Physics, Kyushu University, Higashi-ku, 812-8581, Fukuoka, Japan Email H. Wada

Advisory Editorial Board
A.O.E. Animalu
Nsukka, Nigeria

R. Blinc
Ljubljana, Slovenia

R. Coehoorn
Eindhoven, Netherlands

R. de Bruyn Ouboter
Leiden, Netherlands

A.J. Freeman
Evanston, Illinois, USA

P. Fulde
Stuttgart, Germany

T. Goto
Kashiwa, Japan

C. Janot
Grenoble, France

G. Kido
Tsukuba, Ibaraki, Japan

M. Krusius
Espoo, Finland

J.C. Maan
Nijmegen, Netherlands

Y. Onuki
Toyonaka-Shi, Japan

F. Peeters
Physica B: Condensed Matter

Country: Netherlands

Subject Area: Engineering | Materials Science | Physics and Astronomy

Subject Category:

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Condensed Matter Physics</td>
<td>02</td>
</tr>
<tr>
<td>Electrical and Electronic</td>
<td>02</td>
</tr>
<tr>
<td>Engineering</td>
<td>02</td>
</tr>
<tr>
<td>Electronic, Optical and Magnetic</td>
<td>02</td>
</tr>
<tr>
<td>Materials</td>
<td>02</td>
</tr>
</tbody>
</table>

Publisher: Elsevier, Publication type: Journals, ISSN: 09214526

H Index: 74

Scope:

Physica B welcomes papers, both theoretical and experimental, in the realm of condensed matter and solid state physics. Emphasis may also be given to modern techniques of condensed matter physics. Contributions can be submitted in the form of regular or review papers. [source]
1. **Theory of I–V characteristics for two-dimensional charge-ordered electron systems at quarter filling**
 Original Research Article
 Physica B: Condensed Matter, Volume 405, Issue 11, Supplement 1, 1 June 2010, Pages S211-S213
 Yasuhiro Tanaka, Kenji Yonemitsu

2. **Thermoelectric figure of merit of τ-type conductors of several donors**
 Original Research Article
 Physica B: Condensed Matter, Volume 405, Issue 11, Supplement 1, 1 June 2010, Pages S79-S81

3. **Intra- and inter-chain polaron diffusion in regio-random polythiophene studied by muon spin relaxation**
 Original Research Article
 Physica B: Condensed Matter, Volume 405, Issue 11, Supplement 1, 1 June 2010, Pages S381-S383
 Risdiana, Fitrilawati, R. Hidayat, A.A. Nugroho, R.E. Siregar, M.O. Tjia, I. Watanabe
Intra- and inter-chain polaron diffusion in regio-random polythiophene studied by muon spin relaxation

Risdiana a, b,*, Fitri Lawati b, R. Hidayat c, A.A. Nugroho b, R.E. Siregar b, M.O. Tja c, I. Watanabe a

a Advanced Meson Science Laboratory, Nishina Center, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
b Department of Physics, Padjadjaran University, Jl. Raya Bandung-Sumedang km.21 Jatinangor Sumedang, Indonesia
c Physics of Magnetism and Photonics Research Division, Faculty of Mathematics and Natural Science, Bandung Institute of Technology, Ganesha 10 Bandung, Indonesia

1. Introduction

The studies of conducting polymers in general have constituted a subject of great research interest due to the wide ranging possibilities for their novel applications in various fields. One of the materials being intensively studied is the polythiophene (PT) based polymers [1–3] which form an important class for its certain practical advantages. They can be easily synthesized with various dopants, and they are chemically as well as thermally stable in air [4]. These polymers can also be readily grafted with different side chains for their property modifications. Specifically, the photo luminescent property and field-effect charge mobilities of PT grafted with alkyl side chain have been reported to be strongly affected by the chain length of its alkyl substituents [3, 5].

One of the most notable properties of these materials is, nevertheless, the observed enhancement of their electrical conductivity induced by the presence of appropriate dopants. The transport measurements of PT have also revealed strong dependence of the conductivity on their molecular structures, such as its regio-regularity (regio-regular or regio-random). A regio-random 3-methylthiophene for example, possesses a conductivity of 50 S/cm, while a more regio-regular configurations has a higher conductivity of 140 S/cm [6]. However, most of the previous studies on those structural effects were conducted by means of macroscopic transport measurements, which did not provide direct information on structure dependent local charge mobility in the polymer.

Prior to this work, we have studied the microscopic charge transport processes in regio-regular poly(3-hexylthiophene-2,5-diyl) by means of longitudinal field (LF) muon-spin-relaxation (μSR) method. The result shows that the temperature-dependent charge carrier mobility exhibits abrupt change associated with the “transition” from intra-chain diffusion (along to the polymer chain) to inter-chain diffusion (perpendicular to the polymer chain) at 25 K [7]. Here, we report the study of temperature-dependent spin diffusion dynamics of the charge carrying polarons in the regio-random poly(3-hexylthiophene-2,5-diyl) along and perpendicular to the chain by LF–μSR method for the purpose of determining the relative contributions of the intra-chain hopping mechanism and inter-chain coupling effect to the charge transport processes in the polymers.

2. Experimental

The regio-random poly(3-hexylthiophene-2,5-diyl) (Sigma-Aldrich) samples were prepared by pressing and wrapping the samples in a 25 μm silver foil and mounted on a silver plate in the cryostat for muon measurements. The μSR measurements were performed at temperature varied from 10 to 300 K in longitudinal magnetic field ranging from 0 to 395 mT at the RIKEN-RAL Muon Facility at the Rutherford-Appleton Laboratory in the UK using a pulsed positive surface muon beam [8, 9]. The μSR function known as the asymmetry parameter A(t) at a time t is defined as $A(t) = [F(t) - zB(t)]/[F(t) + zB(t)]$, where F(t) and B(t) are total muon events counted by the forward and backward counters, respectively,

Keywords:
Regio-random poly(3-hexylthiophene-2,5-diyl)
Muon-spin-relaxation
Spin diffusion

A R T I C L E I N F O

Longitudinal field (LF) muon-spin-relaxation measurements have been performed for polythiophene based polymers of regio-random poly(3-hexylthiophene-2,5-diyl) to elucidate the intra- and inter-chain hopping mechanisms. The LF dependent muon-spin depolarization rate indicates the occurrence of pronounced shift in the relative dominance of charge transport mechanism from intra-chain diffusion to inter-chain diffusion at 50 K which is higher than the 25 K observed previously for the regio-regular case.

© 2010 Elsevier B.V. All rights reserved.