Abstrak RSS

Inhibition of Phosphorylated c-Jun NH(2)-terminal Kinase by 2’,4’-dihydroxy-6-methoxy-3,5-dimethylchalcone Isolated from Eugenia aquea Burm f. Leaves in Jurkat T-cells

Inhibition of Phosphorylated c-Jun NH(2)-terminal Kinase by 2’,4’-dihydroxy-6-methoxy-3,5-dimethylchalcone Isolated from Eugenia aquea Burm f. Leaves in Jurkat T-cells
Melisa I. Barliana, Ajeng Diantini, Anas Subarnas, Rizky Abdulah, Takashi Izumi
Universitas Padjadjaran, Pharmacognosy Magazine Volume 13 Issue 51 July-September 2017 (Supplement 3), ISSN : 0973-1296
Bahasa Inggris
Universitas Padjadjaran, Pharmacognosy Magazine Volume 13 Issue 51 July-September 2017 (Supplement 3), ISSN : 0973-1296
, , ,

Background: Indonesian medicinal plants have been used for their anticancer activity for decades. However, the therapeutic effects of medicinal plants have not been fully examined scientifically. As cancer is a major health problem worldwide, searching for a new anticancer compound has attracted considerable attention. Our previous study found that 2’,4’-dihydroxy-6-methoxy-3,5-dimethylchalcone, an active compound isolated from leaves of Indonesian medicinal plants Eugenia aquea Burm f. (Myrtaceae), had anticancer activity in MCF-7 human breast cancer cells through induction of apoptosis. Objective: To investigate the molecular mechanism of 2’,4’-dihydroxy-6-methoxy-3,5-dimethylchalcone antiproliferative activity. Materials and Methods: Leaves of E.  aquea were extracted by ethanol, fractionated by ethyl acetate, n-hexane, or water, and isolated for its active compound. Jurkat T-cells were treated with 2’,4’-dihydroxy-6-methoxy-3,5-dimethylchalcone for 12 and 24 h, and a cell viability assay and real-time-reverse transcriptase polymerase chain reaction for interleukin-2 (IL-2) mRNA measurement were performed. The effects of active compound to mitogen-activated protein kinases were also examined to investigate the mechanism of its antiproliferative activity. Results: 2’,4’-dihydroxy-6-methoxy-3,5-dimethylchalcone inhibited Jurkat T-cell proliferation with a half maximal inhibitory concentration of 59.5 µM. Although IL-2 mRNA expression was slightly increased after treatment, it inhibited c-Jun N-terminal kinase expression but not p38 and extracellular signal-regulated kinase expression. Conclusions: Our study indicated that the molecular mechanism mediating the antiproliferative activity of 2’,4’-dihydroxy-6-methoxy-3,5-dimethylchalcone may be attributed to the stimulation of an immunological microenvironment in the cells.

Download: .Full Papers