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Abstract 

Many diseases are known to have specific properties, such as one might be easier to transmit to 
adults while the other might be easier to infect children. For this reason, incorporating age-
structure in modelling the disease transmission will give a better insight into how the disease 
spreads. However, many mathematical models have ignored this age-structure in analysing the 
disease transmission. In this paper we discuss a simple mathematical model for disease 
transmission with the inclusion of age-structure. Some classical questions such as the equilibrium 
population size, the basic reproductive number and the critical vaccination level are investigated. 
The results show that some properties to some extent are the generalization of the non-age-
structure results while some are quite different from the known non-age-structure results. 
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1. The Model 

Suppose that we divide a population into two groups, adults (group 1) and children (group 
2). Among the simplest epidemic model in incorporating this division can be done by modifying 
the simple SIR model described in [1; p.43] to obtain the following equations: 
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where S1 and I1 , respectively, denote the numbers of susceptibles and infectives for the adults, and 
S2 and I2 , respectively, denote the numbers of susceptibles and infectives for the children. Let us 

assume that the birth rate, mortality rate and recovery rate for each group be Bi, iµ  and iα , 

respectively. Furthermore, the infection rate in group i is assumed to be proportional to the 
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numbers of contact between susceptibles in group  i and the infectives from groups i and j.  Here  

ijβ  denotes the constant of proportionality. In the following sections we investigate the effects of 

mortality rate iµ and infection rate ijβ to the equilibrium values 
*
iS  and 

*
iI , to the basic 

reproductive numbers, and to the minimum vaccination levels. 
 

2. The effects of mortality and infection rates to the equilibrium values *
iS  and *

iI  

In this section we discuss the effects of the mortality and infection rates to the values of 

the equilibriums 
*
iS  and 

*
iI . The effects will be investigated by looking at three different 

assumptions, namely: 
1. Both groups are incorrectly considered to be un-coupled (there is no cross-infection between 

groups) and iβ  are calculated just before the mixing happens (pre-mixing) 

2. Both groups are incorrectly considered to be un-coupled and iβ  are calculated just after the 

mixing happens (post-mixing) 
3. Both groups are correctly considered to be coupled (there is cross-infection between groups). 

To find the equilibriums of equations (1)-(4) we simplify the notations as follows: i
e
im SS =*

 

and i
e
im II =*

. The LHS of equations (1)-(4) are set to be zero. Next we substitute 

21121111 ISIS ββ + and 22221221 ISIS ββ +  from equations (3) and (4) into equations  (1) and 
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The complete equilibriums are shown in Table 1. 
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Table 1: The equilibrium values for three different assumptions. 1. Separated groups (pre-
mixing); 2. Separated groups (post-mixing); 3. Coupled groups. In the coupled group model, the 
equilibriums are in implicit form. 
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 To compare the values of the equilibriums we substitute back the resulting values of 1I  

and 2I  into equations (1) and (2), which were equating to zero beforehand, to obtain   
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The last two equations were solved (in this case we use Maple V), by considering ααα == 21  

and BBB == 21 , to find an implicit form 
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In which 
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2
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The expression of 2X  can be simplified into  

( ))()()( 112122111112122 µβαβµβαβµαµµαα +++−+++−= SBX .  

The next simplifications of 2X  and 2Y  yields 

( ))()(())(( 1122111212 µαβµαβµαµα +++−++−= SBX ,  
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( ))()()( 2111121112 µαµβµαµµα ++++−−= NSY .  
10 

Furthermore, to compare the values of equilibrium of the different groups we let 

21 SSS −=∆ , so 
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))(())()(())(( 1121112111121121 BSSSBBSS −++++−+−+= µµαβµαµαµµµαβ
[ ] ))(()())(()( 12112121112111 BSSSSB −+++−++−= µµαβµαβµαµαµ  

( )[ ] ))(()()()( 1211211111211 BSSSSB −++−++−= µµαββµαµαµ . 

It is easy to show that if µµµ == 21 , 02112 == ββ  and βββ == 2211  then 

equilibrium values for both groups are equal. The discussion in [2] shows that if 21 µµ ≠  and 

there are no cross infection between the two group, i.e. 02112 == ββ , then the equilibriums for 

both groups can be obtained from a single (unstructured) model.  

Next we see the following case of 21 µµ ≠  and 022211211 ≠==== βββββ . 

In this case we assume that the mortality of the two groups are different and each group can infect 
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each other. We will show that 21 SS ≠ . We will also show that conclusion if we incorrectly 

assume that there is no cross-infection between groups will significantly different from the case if 
we correctly assume that indeed there is a cross-infection between the groups. 

Note that from 21 SSS −=∆  we can derive 

( )[ ] 0))(()()()( 121121111121121 >−++−++−=− BSSSSBSS µµαββµαµαµ  

provided 0)( 11 =− SB µ  and 0)( 12 >− BSµ . Alternatively 11/ µ=SB  and 21/ µ<SB , 

means that 21 µµ < . This concludes that 2121 SS >⇒< µµ . This result contradicts the 

result if we incorrectly assume that there is no cross-infection between the groups, that is 
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.  We give a numerical example to illustrate this phenomenon 

in [2].  
 
 
3. The minimum vaccination level 

Let us assume that a portion pi of susceptible population is vaccinated so that the 
dynamics is given by equations (1) to (4) except 
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Equilibrium values of the system, now are given by 
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with 
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 . It is clear that eventually there will be no infective if 

1)1( 0 ≤− ii Rp means that 
i

i R
p

0

1
1−≥ . We conclude that the critical vaccination level  for 

each group is given by ici Rp 0/11−= . This value has the same expression as the critical 

vaccination level for many known structured or un-structured population models [3]. 
 
 
4. The computation of the basic reproduction ratio 
 In this section we derive the basic reproductive ratio, R0, for the system in equations (1) 
to (4). In this system there are two types of infections: type 1 infected by group 1 and type 2 

infected by group 2. To find the R0, we construct the next generation matrix 
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where ijk  = expected number of new cases of type i infected by one case of type j. Hence, 
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The full matrix is given by 
 



 5























++

++
=

22

222

11

221

22

112

11

111

µα
β

µα
β

µα
β

µα
β

SS

SS

K . 

 
 
 

13 

 
In [1] it is found that R0 is the dominant eigen value of the matrix K. Since the eigen 

value for 2x2 matrix is given by the root of the characteristic equation 

0)()(2 =+− KDetKTrace λλ , it can be proved that if iiij ba=β then  
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In this case R0 for the coupled groups is the average of the R0 for the un-coupled groups. The 
knowledge of R0 both for coupled or uncoupled groups, and its changes to the change of other 
parameters, is very important to compare various decisions in controlling the disease. Relevant 
question regarding an age-structure, such as which group should have a high priority to be 
vaccinated can be address further.  We examine the effects of the mortality and infection rates to 

the values of R0, and hence to the critical vaccination level, by investigating various cases of ijβ , 

elsewhere. 
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