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Introduction 

The exploitation of multi-species fisheries, such as fisheries which have biological 
interactions between species (population) or fisheries incorporating geographically interconnected 
species, is not well understood (Hilborn and Walters, 1992). Many scientists point out that 
appropriate policies for fisheries management are only possible if we have a comprehensive 
understanding of the underlying systems which are exploited (Yodzis, 1994; Botsford et al., 
1997). They also argue that management practices could be improved if we include interactions 
between species in developing multi-species models (Hall, 1998). 

In this paper we discuss a continuous mathematical model for the exploitation of a bio-
geographically-interconnected populations. Biologically the population has a predator-prey 
interaction and geographically it has a metapopulation structure. The model here modifies Clark 
(1976) model for selective and explicit inshore-offshore model with the inclusion of two species 
interaction within two patches of habitat. These two patches are connected by the diffusion of the 
prey and the predator. The rates of the diffusion are assumed to be proportional to the differences 
of the population size between the two patches. It is assumed that individuals flow from the larger 
population size to the smaller. Let the number of prey and the predator in the patch i are denoted 
by iN  and iP , respectively. If 1212   and PPNN >>  then the prey and the predator move from 

patch two to patch one with the rate proportional to )(  and  )( 1212 PPNN −− , respectively. It is 
also assumed that the only possible harvesting is a selective harvesting, in which we can choose 
how much effort that we can distribute to each population on each patch. Furthermore, in the 
absence of harvesting and diffusion, the dynamics of the prey and the predator on each patch are 
governed by the following structurally stable systems (May, 1973): 

iii
i

i
iiiii

i PN
K

N
NrPNF

dt

dN α+





−== 1),(  (1) 

iii
i

i
iiiii

i PN
L

P
PsPNG

dt

dP β+





−== 1),(  (2) 

where )(  and )( iiii LKsr  denote the intrinsic growth rate of the prey (predator) and prey’s 

(predator’s) carrying capacity, respectively. In this case 0 and 0 >< ii βα  to ensure that the 

system reflects a predator-prey interaction. If symmetric diffusions and selective harvesting are 
introduced, then the complete model is: 
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where Pσσ  and N  are the coefficient of the rate of diffusion for the prey and the predator, 

respectively. The rate of harvesting for the prey and the predator on patch i are given by 
)( and )( thth PiNi . These harvesting terms can be seen as production functions of the stock 

abundance. For simplicity we assume that iNiNi NEth =)(  and iPiPi PEth =)( , where iNi NE  and 

iPi PE  denote the amount of efforts to remove the harvests from prey population iN and predator 

population iP . 

To obtain optimal harvests we use the concept of net present value maximization. In this 
case, we maximize the discounted net present value (PV) of the total revenue resulted from the 
harvests. If we choose δ−e as a discounting factor, then the present value, which should be 
maximized, is given by    
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where NiR  and PiR denote the net payment of the prey and the predator harvesting from patch i. 

We assume that the price of the stock do not depend on the location where they are harvested but 
only depend on whether they are prey or predator.  On the other hand, the costs of harvesting are 
the function of the stocks and their locations. Furthermore, they will be assumed to be decreasing 
functions of the stock size. With these assumptions the function  
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is a reasonable choice to reflect the net payment.  
Using this equation, the total revenue of harvesting from all patches and from both prey 

and the predator is now given by 
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Hence, the objective of the manager of the resources is now to maximize the net present value in 
equation (7) subject to equations (3) and (4), assuming that 

max,)(0 XiXi hth ≤≤ 0)0(  and  0)( iii XXtX =≥ . This maximization will produce implicit 

equations 
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This system of implicit equations is a generalization of the optimal selective harvesting equations 
for a couple biologically interdependent populations (if 0=Xσ ) found by Clark (1976). It is also 
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a generalization of the optimal offshore inshore harvesting equations for a single population 
found by the same author (if iα  in ),( iii PNF  is zero or if iβ  in ),( iii PNG  is zero).  

The equation shows that if the costs of harvesting are negligible then the dispersal of 
individuals does not affect the equlibrium population levels. In this case, numerical examples 
reveal that the equlibrium population level decreases by the amount of the multiplication of the 
discounting rate, δ . Figure 1 show the equilibrium population size for prey population with 
K1=K2=400.000 as a function of the predator-prey interaction, α , and the ratio of the price of the 
predator and the prey, NP pp / . It shows that when α  is very small, the equilibrium prey size is 

close to its maximum sustainable yield (MSY), Ki/2=200.000. The equilibrium preys size 
increases significantly with the increasing of α  for large values of the ratio NP pp / , but it nearly 

stays the same for small values of the ratio NP pp / . It suggests that it is optimal to leave the prey 

as food for the predator when the price of the predator is higher. Figure 2 shows that if the 
predator-prey interaction is relatively high but the predator is relatively cheap then the predator 
should be kept below its maximum sustainable yield to reduce the effect of predatory to the prey 
(in this example we assume that L1=L2=40.000, hence the MSY is Li/2=20.000). Other 
simulations can be done to interpret equations (8)  - (11) by changing various parameters in the 
equations. 
 
 

 
Figure 1 Figure 2      
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