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A transmission model for dengue fever is discussed here.  Restricting the dynamics for the 

constant host and vector populations, the model is reduced to a two-dimensional planar 

equation. In this model the endemic state is stable if the basic reproductive number of the 

disease is greater than one. A trapping region containing the heteroclinic orbit connecting the 

origin (as a saddle point) and the endemic fixed point occurs. By the use of the heteroclinic 

orbit, we estimate the time needed for an initial condition to reach a certain number of  

infectives.  This estimate is shown to agree with the numerical results computed directly from 

the dynamics of the populations.  
 

1.  Introduction 

Dengue fever is regarded as a serious infectious disease that risks about 2.5 

billion people all over the world, especially in the tropical countries [2]. Mortality rate of 

this infectious disease may reach 40 % if the infected person is left untreated [3]. 

Although almost all of the occurrences of the dengue are in the tropical countries, a 

recent study shows that the dengue may occur in cooler countries due to the global 

warming effects  [4]. The climate change may convert a region from an unsuitable habitat 

for Aedes aegypti mosquitoes to live to a new suitable habitat; the Aedes are the 

responsible vector in transmitting the disease. 
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To control the dengue effectively, we should understand the dynamics of the 

disease transmission and take into account all of the relevant details, such as the 

dynamics of the vector. Recently Esteva and Vargas [1] developed a model for the 

dengue disease transmission and included the dynamics of the Aedes aegypti mosquitoes 

into a standard SIR (susceptible-infective-recover) epidemic model of a single 

population. Their model shows that there is a threshold value R which is a function of  

Aedes equilibrium population size and of the Aedes recruitment rate, above which the 

disease will be endemic and below which the disease will vanish. 

In developing their model, Esteva and Vargas assume that once a person recover 

from the disease he or she will not re-infected by the disease. We show in this paper that, 

in their model, if the Aedes recruitment rate is very large then only a small proportion of 

the population becomes infected. This situation is not alarming and may not have a good 

psychological effect on the management of the disease, that is, it may not persuade a 

health manager to take a quick response in controlling the disease. In this paper we 

remove the immunity assumption and predict the time needed by an initial number of 

infected population to multiply. The result can alert us because for a large Aedes 

recruitment rate, the time to multiply (e.g. ten times) is very short. In the next section we 

review the model of Esteva and Vargas in more detail. 

 

2.  Host-Vector Model for a Dengue Transmission 

We review the Host-Vector model of Esteva-Vargas [1] for the transmission of 

dengue fever as follows. The model is based on the assumption that the host population 

NH is constant, i.e. the death rate and birth rate are equal to Hμ . The vector population 

, which is in general very difficult to estimate, is governed by a monotonic model VN

. '
VVV NAN μ−= (1)

Here Nμ  is the mortality rate of the vector, and A is the recruitment rate. This mosquito 

model can be explained from the fact that only a small portion of a large supply of eggs 

survive to the adult stage [6]. Hence, A is independent from the adult population. The 

dynamics of the vector approaches to the equilibria A/ Vμ  as ∞→t .  
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In the Esteva-Vargas model [1] the majority of the host population eventually 

becomes immune. The host population is subdivided into the susceptible , the 

infective  and the recovered, assumed immune, . The vector population, due to a 

short life period, is subdivided into the susceptible  and the infective . 

HS

HI HR

VS VI

The interaction model for the dengue transmission [1] is given as follows 
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Note that we remove the alternative blood resource from [1] due to the fact that 

practically there is no other blood resource other than human in urban areas. 
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Further reduction of (2) to a three-dimensional dynamics is obtained from a 

restriction to an invariant subset defined by 

                                         .   and  
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Note that the second fixed point exists in the region of biological interest, i.e. 

, only if the threshold parameter1,,0 << zyx 1>=
δβ
αγR . The number 

RR =0 represents the basic reproductive number. The following theorem has been 

proven in [1]. 

 

Theorem 1 If 1≤R , the fixed point F1 is globally asymptotically stable in the region of 

interest }1,,0:),,{( <<=Ω zyxzyx  and if 1>R , F1  is unstable and the endemic fixed 

point F2 is globally asymptotically stable in the interior of Ω. 
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Global stability of F1 for 1<R  is shown in [1] using Lyapunov-like function yz +
δ
α  

satisfying  
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if 1<R . On the other hand, if 1>R  the fixed point F1 becomes locally unstable and F2 

becomes locally asymptotically stable. The global stability is shown in [1] by use of the 

property of stability of periodic orbits.  

Note that α  is the only parameter in (4) containing A. Study [4] has indicated that 

the mosquito population (and therefore the recruitment number A) may change from time 

to time due to climate change. Although there is a report indicated that the biting 

behavior of the mosquito has gradually changed and b is thought to vary with climate, we 

assume that during a long period of observation, the biting rate b and the rest of the 

parameters remain constant.  

 Regarding the control strategy for the epidemic, it is always the interest of 

everyone to lower the basic reproductive number  as small as possible (or equivalently 

to lower the recruitment number A as small as possible). Various applications of 

insecticides such as ULV have been used. Simulation of the application of ULV is shown 

in [1]. It shows that the delay of the abrupt change of μ

0R

V due to ULV will give effect to 

the delay of the endemic stage but will only slightly reduce the severity. The strategy to 

lower R0 seems unrealistic as indicated by the reappearance of the outbreak almost every 

year in the last 10 years. On the other hand, what is going to happen if A is so large? This 

can be seen by taking the limit as ∞→A . In this case, the endemic state approaches the 

limit  
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It shows that although all mosquitoes are infected, only a small proportion of the human  

population becomes infected, that is, H
H

HI γμ
μγ

μ
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H   where, . This may be true 
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since in this model the majority of the population  eventually become immune (we will 

remove the immunity condition in Section 3). 

We are interested to investigate what happens if few infectives ( ) are 

introduced to the population. This illustrates, more or less, how the outbreak started. The 

following pictures show the dynamics of the  and  in 100 days after one 

infected human entered the population (all parameter values are taken from [1]). 

 or  VH II
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Figure 1: Dynamics of   in 100 days with the initial condition 

(0.9,0.0001,0) for  

)3(  and (2)  ),1( VHH IIS
,/0000457. dayH =μ ,/25. dayV =μ ,75.,5. == Hb β ,1=Vβ  

,/1428. dayH =γ 000,10=HN  and 000,5=A . With these parameters, . 24.3=R
 

Figure 1 shows that  drops significantly in a relatively small period of time. Both  

and  increases significantly during the period of 30 days, and then eventually oscillate 

around the endemic state (0.09529,0.0.00029,0.00058). This seems unrealistic in the 

nature. With constant population of mosquitoes, this fluctuation (in a short period of 

time) can not be shown to happen in the nature. The sharp decrease of S

HS HI

VI

H and increase of 

RH in the model (2) are due to the fact that μHRH is relatively smaller than both IHIV and 

SHIV at least in the domain of observation where IH  in reality is relatively very small. The 

following simplified model gives a more realistic result. 
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3.  Host-Vector Model without Immunity 

Not enough information is known about the immunity after recovery. Reports 

indicate that recovery from a certain serotype virus is not immune from other serotype 

viruses (Dr. R. Agoes, MPH. Personal. Comm.). Assuming that immune subpopulation is 

negligible, then we have the dynamics  

( )

(7)                                                              .
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Reducing the dynamics along invariant subsets 
V

A
VV IS  and  μ=++= HHH ISN , and 

using the same notation for the proportion variables x and y as before, we have 
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3.1 Stability of the endemic state 

 The corresponding characteristic equation of the fixed point (0,0) is  

( ) .02 =+−++ βδαγλδβλ                                                    (9) 

The origin remains locally stable if .0≤− βδαγ  The same Lyapunov-like function  

yzL +=
δ
α  can be used to show that the origin is globally stable. When 0>− βδαγ  

(this is equivalent to 1>R ), the origin becomes unstable and the second fixed point 

, where ( 00 , zy ) )( βαγ
βδαγ
+
−=0y  and ( )δγα

βδαγ
+
−=0z , appears. The characteristic equation for the 

second fixed point is  

00
2 =−++ βδαγλλ a                                                      (10) 
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where ( ) ( )
( )( )βαδγ

βαγγδα
++
+++=

22

0a . Both eigenvalues of (10) have negative real parts if R>1. 

Hence the second fixed point is locally stable. Global stability can be easily shown by 

simple phase plane analysis with the direction of the vector fields of the system, as 

indicated by the following theorem. 

Theorem 2  Let ( ) ( ){ }01 0,|, yyzzy y
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d G j = 1,2. This shows that any orbit crossing Ω∂  is trapped inside Ω  since the 

gradient of  along  is pointing inward. With the vector field inside  pointing 

away from the origin we have the unstable manifold of the fixed point (0,0) connecting 

the origin with the second fixed point. By rewriting 
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Figure 2:  Trapping region Ω . The dotted curve is the heteroclinic orbit 

 

 Further we will answer the question “how long it takes from a given initial 

condition (one infective) to reach a certain stage ?”. In the neighborhood of (0,0), the 

orbits quickly enter Ω  and then follow close to the unstable manifold (the heteroclinic 

orbit). Since the heteroclinic orbit is monotonic then it is reasonable to approximate this 

orbit by a line connecting (0,0) and (x0,y0). Let the initial condition be ( , the 

estimate time T to reach the infective can be done by integrating (8) along the line 
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Note that  as expected. Figure 3 shows comparison between (11) and 

numerical calculation with PHASER [5]. It shows that it takes 186 days and 5 days for 

one infective human to become 10 for 

01   as  yyT →∞→

5000  and  600 == AA  respectively. 
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Days

A

   

Figure 3:  Estimate time (days) needed from one infected human to become ten 

(continuous graph) and the numerical calculation with PHASER directly from the 

dynamics in equation (8)  (dotted graph). 

 

4. Conclusion 

We have shown the analysis of a two-dimensional dynamics of human-mosquito 

interaction based on the host-vector model of Esteva-Vargas [1]. In the case of large 

recruitment rate and when the number of infected human and infected vector are initially 

very small, the trajectory quickly enters the trapping region, monotonically increases and 

approaches the stable endemic state. Assuming that the fluctuation of the dynamics of  

and  is due to the change of the vector population, this ‘’monotonic’’ model is a good 

representation for a short period simulation of the real situation. A study [7] has indicated 

that the mosquito population, and therefore the recruitment number A, may change from 

time to time due to climate changes. We discuss elsewhere the effects of a periodic 

mosquito recruitment rate on the dengue transmission [8]. Further development of the 

model can then be generated from the present model by adding relevant complexities, 

such as human migration and vector dispersal. 
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