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Abstract 

 
In this paper we discuss a critical vaccination level in the transmission of dengue fever 
disease. We assume that the vaccination is administrated constantly, either to some 
proportion of the whole susceptible human population or to some proportion of 
newborns. We also assume that the effect of vaccination is perfect, that is it prevents the 
vaccinated susceptible individual from catching the disease caused by all type of dengue 
viruses. The critical vaccination level then is obtained as a function of the basic 
reproductive ratio, R0, which is consistent with the rule for the simple SIR model. Above 
this prescribed critical level, vaccination will make the disease die out. Conversely, 
below this prescribed critical level, the disease will persist. The model suggests that 
vaccinating general susceptible human population is significantly more effective than 
vaccinating newborn human population. 
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1 Introduction 

Dengue fever disease has been known as a dangerous disease since 1779 [1]. The spread of 
the disease is now increasingly becoming an important public health problem in many 
tropical and subtropical countries, including Indonesia. One among the reasons is because 
until recently there is no known vaccine to prevent one from this disease. Standard program 
used by the Indonesian government to control the spread of the disease is the eradication of 
the main disease vector, that is the eradication of the Aedes aegypti mosquitoes. However, 
many studies show that this program was not fully effective. Many cases of dengue and 
dengue haemorrhagic fever still occur almost periodically in many urban areas. Fortunately, 
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with the advancement of science and technology, the invention of vaccine for the dengue 
disease is now getting closer and closer [2].  

There are only few researchers who have investigated the effects of vaccination on 
the transmission of infectious diseases, among them are [3,4,5,6]. In [3] the authors showed 
that a pulse vaccination strategy is effective to some extent to eradicate an epidemic. The 
researchers in [4] discussed the role of the vaccination failure to induce the development of 
the immune response in a disease outbreak. All of the researchers mentioned above work on a 
direct-transmitted disease. The effect of vaccination on an indirect-transmitted disease or on a 
vector-borne disease, such as dengue fever disease, has received little attention. The main 
objective of the present paper is to determine the level of vaccination effort required for 
eradicating the dengue disease, once a perfect vaccine is available. The vaccine is perfect if it 
is completely successful and can avoid the vaccinated individual from catching the dengue 
disease caused by all known types of virus. To address this issue we will develop a 
mathematical model similar to our previous work with the inclusion of vaccination [6]. 
 
 
 
2 Host-Vector Model in the Absence of Vaccination 

Our model is closely related to the model in [7]. We review the Host-Vector model in [7] for 
the transmission of dengue fever as follows. The model is based on the assumption that the 
host population NH is constant, i.e. the death rate and birth rate are equal to Hµ . The vector 

population VN , which is in general very difficult to estimate, is governed by a monotonic 

model 

. '
VVV NAN µ−=  (1) 

Here Nµ  is the mortality rate of the vector, and A is the recruitment rate. This mosquito 

model can be explained from the fact that only a small portion of a large supply of eggs 
survives to the adult stage [8]. Hence, A is independent from the adult population. The 
dynamics of the vector approaches to the equilibria A/ Vµ  as ∞→t .  

In [1] the majority of the host population eventually becomes immune. The host 
population is subdivided into the susceptible HS , the infective HI  and the recovered, 

assumed immune, HR . The vector population, due to a short life period, is subdivided into 

the susceptible VS  and the infective VI . The interaction model for the dengue transmission 

is given as follows 
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Note that we remove the alternative blood resource from [7] due to the fact that practically 
there is no other blood resource other than human in urban areas. 

Further reduction of (2) to a three-dimensional dynamics is obtained from a 
restriction to an invariant subset defined by 

.   and  
V

VVHHHH

A
ISNRIS

µ
=+=++  (3) 

 

The resulting dynamics, expressed in proportions 
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where  
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Two possible fixed points of the system are 
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Note that the second fixed point exists in the region of biological interest, i.e. 1,,0 << zyx , 

only if the threshold parameter 1>=•

δβ
αγ

R . The number •= RR0 represents the basic 

reproductive ratio. It has been proven in [7], that if 1≤•R , the fixed point F1 is globally 

asymptotically stable in the region of interest }1,,0:),,{( <<=Ω zyxzyx  and if 1>•R , 
F1 is unstable and the endemic fixed point F2 is globally asymptotically stable in the interior 
of Ω.  In the next section we will determine the levels of vaccination that able to change the 
globally asymptotically stable fixed point F2 to a fixed point where the components y0 and z0 

vanish.  

 

 

3 Host-Vector Model with the Inclusion of Vaccination 

In this section we consider two types of vaccination programs, one is applied just to 
newborns and the other one is applied to general population. 
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3.1 Vaccination for newborns 

We assume p proportion,  ( 10 ≤≤ p ), of a newly born infant is vaccinated with a perfect 
vaccine. The vaccine is perfect if it is completely successful and can avoid the vaccinated 
individual from catching the dengue disease caused by all known types of dengue virus. With 
this assumption, the governing equations as in (2) except the dynamics of the human 
susceptible is given by 

HHVH
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H
HHH SIS

N

b
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d µβµ −−−= )1(
. (9) 

 

Using (3), (4) and (6) we end up to a complete dimensionless equations for the 
dynamics of the dengue disease transmission with vaccination, i.e. 
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Appendix 1 shows that if 
δβ
αγ=•R , the dengue disease transmission with the inclusion of 

constant vaccination has equlibrium points  
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(12) 

Since 10 ≤≤ p  then the proportion of susceptible, px0 , is always positive. 

Furthermore if •−≥
R

p
1

1 , or equivalently 1)1( ≤−• pR , both py0  and pz0  disappear. It 

means that if we vaccinate p proportion of newborns with •−≥
R

p
1

1 then it will ensure that 
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eventually the disease will fade away. While conversely, if only p proportion of newborns 

with •−<
R

p
1

1 then the disease will persist. The number 

•−=
R

pc

1
1  

(13) 

is a critical vaccination level. This critical vaccination level is different from the one for the 
direct-transmission disease.  

In [3] it has been shown that the critical vaccination level for the direct-transmission 
disease is exactly the same as one minus the inverse of the basic reproductive ratio, i.e. 

0

1
1

R
pc −= . It is assumed in [3] that the growth of susceptible in the absence of the disease 

is linear. In [5] the same result is also established for the logistic growth of the susceptible. In 
ours the critical vaccination level for the indirect-transmission disease is exactly the same as 
one minus the inverse of the square of the basic reproductive ratio1.  Appendix 2 shows that, 
compared to the system without vaccination, the basic reproductive ratio R0 does not change,  

 

 

3.2 Vaccination for general population 

We consider the system in which q proportion of susceptible host is vaccinated. Then we 
have 
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The dynamic of I remains the same as in (2). Appendix 1 shows that the fixed poits for the 
system are: 
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1 In [9] R0 is defined as the spectral radius of the next generation matrix. Appendix 2 derives R0 
directly for our host-vector transmission with vaccination. 



 7 

The critical vaccination level is given by •−=
R

qc

1
1 , which is the same threshold as in the 

case of vaccination for the newborn (13). Above this threshold, vaccination convert both py0  

and pz0  to zero, which ensures that the disease fade away. We also found that the square of 

the basic reproductive ratio is  

HVHH

VVH
q N

qAb
R

µµγ
µββ
)(

)1(/2

+
−

=• . (18) 

 

4 Concluding Remarks 

In this paper we present the critical vaccination level for indirect transmission disease and 
consider two vaccination strategies, newborn vaccination and general vaccination. We found 
that the critical vaccination levels for both strategies are consistent in form to the one in the 
direct-transmission model.  

Different from the case of newborn vaccination, in which •• = pRR , we note that 

general vaccination alters the square of the basic reproductive ratio from •R  to 

)1( qRRq −= •• . This is not surprising since the basic reproductive ratio measures the 

strength of the disease in the early stage; hence the effect of the newborn vaccination has not 
been observed yet. This also suggests that general vaccination is more effective than newborn 
vaccination as far as time needed concern. However, in long term, both strategies are able to 
eliminate the disease provided they are above the critical vaccination level, as indicated by 
the shifting of endemic equilibrium into the stable disease-free equilibrium [see (12), (16) 
and Appendix 3]. 

A numerical example (Figure 1.c) shows that, if we apply the newborn vaccination 
then there is still a single outbreak followed by exponential decay cases going toward the 
disease-free equilibrium. Hence, the effect of vaccination is to replace multiple outbreaks 
with a single outbreak. However, if we apply the general vaccination there is almost no 
outbreak occurs and the cases exponentially decay approaching the disease-free equilibrium 
(Figure 1.d). Future research can be done by taking into account more realistic complexities, 
such as strain-specific vaccination, decreasing immunity effect of vaccination and adding 
return path from recover to susceptible. We also investigate the effect of the diversion in the 
implementation of the vaccine elsewhere [10]. 
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   (a)      (b) 

 

   (c)      (d) 

 

Figure 1: Figure (a) and (b) show the proportion of the infective human 
population without vaccination. First outbreak occurs at approximately t=12 (a).  
Second outbreak and onwards begin from t=4000 (b). Figure (c) and (d) show the 
proportion of the infective human population if, respectively, newborn 
vaccination and general susceptible vaccination is being applied. If the newborn 
vaccination is applied, Figure (c) shows that still one outbreak occurs followed 
by exponential decay cases (c). However, if the general susceptible vaccination is 
applied, Figure (d) shows that there is almost no outbreak and the number of 
subsequent cases exponentially decay. This suggests that vaccinating general 
susceptible human population is significantly more effective than vaccinating 
newborn human population. The parameters used to produce the figures are as in 
[6] with p and q are above the threshold. 
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Appendix 1: Equilibrium Points 

Consider the system 
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Appendix 2: The Basic Reproductive Ratio 

Consider the system where both vaccinations are applied. The number of vectors infected by 
one infectious host is the force of infection times the proportion of susceptible vectors times 

sojourn time of the infectious host, which is, 
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Appendix 3: Stability Analysis 

In order to reduce the number of parameters in the system, we re-scale the time 
variable by ., tατα = Using the same notations, the system (10) can be written in a 
simpler form by replacing 1=α . Further, starting from this point, we assume that 

.1=α  We can investigate the behavior of the endemic equilibrium in (11) by noting 
the characteristic polynomial of the second fixed point, 001
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All coefficients of the characteristic equation are non-negative for 
*

1
1

R
p −≥ . Direct 

calculation shows that 3021 AAAA ≥ , which implies that the second fixed point is 

locally stable. More precisely, in this case the endemic equilibrium changes into the 
stable disease-free equilibrium. The stability analysis for the endemic equilibrium in 
(15) can be done similarly. 
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