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a b s t r a c t

In this paper, we discuss a two-age-classes dengue transmission model with vaccination. The reason to
divide the human population into two age classes is for practical purpose, as vaccination is usually con-
centrated in one age class. We assume that a constant rate of individuals in the child-class is vaccinated.
We analyze a threshold number which is equivalent to the basic reproduction number. If there is an
undeliberate vaccination to infectious children, which worsens their condition as the time span of being
infectious increases, then paradoxically, vaccination can be counter productive. The paradox, stating that
vaccination makes the basic reproduction number even bigger, can occur if the worsening effect is greater
than a certain threshold, a function of the human demographic and epidemiological parameters, which is
independent of the level of vaccination. However, if the worsening effect is to increase virulence so that
one will develop symptoms, then the vaccination is always productive. In both situations, screening
should take place before vaccination. In general, the presence of class division has obscured the known
rule of thumb for vaccination.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

One of the most important public health programs in many
tropical countries is the program to control or to eliminate dengue.
This is because dengue is regarded as a very dangerous disease that
may lead to death. The disease is caused by one of four known
strains of flavivirus, namely DEN-1, DEN-2, DEN-3, and DEN-4. It
is transmitted mainly by female Aedes aegypti, although it is also
reported that Aedes albopictus can transmit the disease in some cir-
cumstances. The modes of transmission known in the literature are
among others vertical transmission from the female adult mosqui-
toes to their young, mechanical transmission from a healthy mos-
quito that has just bitten an infectious human to a healthy human,
and from an infectious mosquito to a healthy human. There are
three stages of severity of an infected human: dengue fever (DF)
comes with mild cold symptoms, dengue hemorrhagic fever
(DHF) causes blood discharge from the vessel, and dengue shock
syndrome (DSS) that may lead to death [20]. In the endeavor to
eliminate the disease, some efforts have already been made in
many countries, such as destroying the adult class of the mosqui-
toes with insecticides and stimulating predation of the larval class
of the mosquitoes. Some other attempts are being investigated,
such as modifying the age structure of the mosquitoes, e.g. by low-
ering their life expectancy genetically, introducing a transgenic

mosquitoes population, e.g. by sterilizing male mosquitoes and
developing a safe vaccine that can protect humans from the four
known dengue viruses [6,21,27,33].

In the past, dengue has been recognized as a young children’s
disease. It attacks mostly children at the age of 3–6 years. How-
ever, it has been reported that nowadays there is a change in this
trend. The predominant age to acquire dengue in Uttaradict Thai-
land has changed and increased by at least 2 years [35]. Other data
showing the increase of the mean age at infection can be found in
[32,46], in which the authors show that the mean age at infection
in the city of Bandung Indonesia has increased from 19 years in the
year 2003 to 25.5 years in the year 2004. The same figure also
shows up in other part of Indonesia, in which among those who
are infected, the population in the age class of 10–19 years ac-
counted for the largest proportion of hospitalized DHF cases, fol-
lowed by children 5–9 years and children of 4 years old [7].
Similar data from Singapore also show that the risk partly shifts
from children to adults [34]. These changes in pattern have made
the management of the disease even more difficult. In order to
manage the disease, one needs to understand the dynamics of
the spreading of the disease. Some health scientists have tried to
obtain some insight in the transmission and elimination of the dis-
ease using mathematical modeling. Here, we mention for instance
[41]. Many mathematical models have been devoted to address
this issue since then, including the seminal work of [26]. In the fol-
lowing section we will review some mathematical models of den-
gue transmission.
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2. Review on mathematical models for dengue

Among the earliest mathematical models for the transmission of
dengue are those developed in [12,17] which are closely related to
the models for the transmission of malaria discussed in [4,11]. The
authors in [17] discuss the model for two types of viruses by allowing
temporary cross immunity and increased susceptibility to the sec-
ond infection due to the first infection. They argue that there is com-
petitive exclusion with the first strain of virus as the winner, if the
susceptibility index of the first strain of the virus is greater than that
of the second strain. Analytical stability results are established in
case virulence is absence. The stability results for the virulence case
are derived numerically. They also argue that age structure may in-
crease the realism of the model. The author in [20] points out that age
is among the risk factors that lead to the severity of dengue and in-
deed most of the patients having DHF are less than 15 years old.
The data in [45] support the claims regarding the importance of
age structure in the transmission of dengue.

Competitive exclusion or strain replacement, as shown in [17],
is also observed in [25] as a result of excessive vaccination, in
which the strain with a larger basic reproduction number outcom-
petes the strain with a smaller basic reproduction number. The
authors in [9] have developed a two-strain dengue model, different
from that of [17]. The authors in [9] assume that the viruses one
after another. They argue that the susceptibles for the second
infection are those individuals who have recovered from the first
infection. They show that the condition needed for the system to
be free from the disease, is that the vaccination level should be
above a certain threshold. They also point out that controlling by
reducing the number of mosquitoes is not sufficient, since it will
only delay the time for the disease to outbreak. This is supported
by [33].

The authors in [12] derive a threshold parameter for their mod-
el of dengue with one strain of virus. They have established a the-
orem concerning the global stability of the endemic equilibrium,
concluding that if this threshold parameter is larger than one, then
the endemic equilibrium is globally stable and otherwise it is
unstable. They have generalized the model to include a variable
human population in [13] and have included a secondary infection
in [15]. Unlike the model discussed in [17], the model in [15] has a
different formulation, namely with a variable host population and
without virulence. They give sufficient conditions for coexistence
of the two strains of viruses. They also consider mechanical and
vertical transmission [14] and conclude that mechanical transmis-
sion has less impact than vertical transmission.

Although there are many papers on age-structured epidemic
models, however, in modeling the spreading of dengue, most of
the researchers have ignored this important age structure factor.
Exceptions are [37,38]. The authors in [37] have generalized the
model in [12] by separating the human population into age co-
horts, and for each cohort by deriving a set of SIR equations. Dis-
ease free and endemic equilibria are found, but there is no
stability analysis for these equilibria. Instead they have used the
model to calculate the age-specific transmission rate for the DHF
data in several places in Thailand. In [38], the authors have simpli-
fied their model to a two-age-classes model. They allow different
transmission rates for the adult and the juvenile classes and as-
sume that juveniles have a higher transmission rate. They have
found disease free and endemic equilibria, and the condition for
the local stability of the disease-free equilibrium in the general
case. The stability condition for the endemic equilibrium has only
been found for the special case, in which no infection occurs for the
adult class. They also argue that the effect of age structure is to in-
crease the period of fluctuation in both the susceptible and the
infective populations in approaching the endemic equilibrium.

Fluctuation in the vector population is likely. There is a mathe-
matical model that considers this fluctuation for a closely related
vector-borne disease, leishmaniasis, which is transmitted to hu-
man by female flies [2]. In this model the authors assume a peri-
odic function as the recruitment function of the fly population.
They also assume that the infective human population is struc-
tured by the time elapsed since the infection occurred. Their main
conclusion is the formula for the basic reproduction number of a
vector-borne disease with a periodic vector population. Another
paper that takes fluctuation into account is [43], which also consid-
ers a periodic recruitment rate. However, the authors in [18,19]
have argued that a cyclical epidemic in the case of dengue is most
likely caused by the presence of multiple strains of viruses.

Another biological complication that arises in the literature
regarding vector-borne diseases is the presence of multiple hosts.
In this case the authors in [28] have studied the dynamics of Afri-
can Horse Sickness, which is transmitted by biting midges Culicoi-
des imicola among horses and donkeys, however, in the case of
dengue, humans form the only main natural host. Transmission
to other mammals is negligible. Other possibilities to make the
model more realistic can be achieved by considering multiple vec-
tors. The main vector of dengue in the urban area is A. aegypti, how-
ever, other species, such as A. albopictus, are also potential to
transmit the disease, though they are less anthropophylic.

The previous mentioned papers mainly discuss the dynamics of
the disease. There are also some studies emphasizing to find the
formula for the basic reproduction number R0 and to estimate it
from available data. The simplest one is found in [29], where the
dynamics in this paper is only given by the host without the vector.
This work has been generalized in [8,16,30,31] to include the incu-
bation time both for the vector and the host, and to include spatial
heterogeneity. The authors in [18] have developed a technique to
estimate the value of R0 with strain-specific forces of infection. Re-
cently there is a caveat in using the concept of R0 as a guidance to
control the transmission of a vector-borne disease. Despite the
common use of the concept of R0 in determining the strength of
general infectious diseases and in controlling their transmission,
the authors in [24,40] argue that R0 can mislead and underestimate
the effort to control a vector-borne disease, such as dengue. They
have developed a new method that leads to the so called type
reproduction number.

In this paper, we discuss a two-age-classes dengue transmission
model with vaccination by comparing the basic reproduction num-
ber as a control to eliminate the disease. We divide the human pop-
ulation into two age classes: the child-class and the adult-class. The
reason to divide the human population into two age classes is for
practical purposes, as vaccination is usually concentrated in one
age class, e.g. the school age class. A study in [42] shows that a pedi-
atric dengue vaccination, that is a vaccination program which targets
children, would be economically viable and highly cost-effective,
once a perfect dengue vaccine is made. Apart from the inclusion of
age classes, this model differs from a simple case of vaccination in
[44], as here vaccination involves not only the newborns and there
is an outflow of vaccinated individuals to the immune class in a lin-
ear effect form. This makes the model more realistic.

We also divide the human population into two subclasses,
namely the subclass with asymptomatic infection and the subclass
with symptomatic infection for the following reason. Several stud-
ies reveal that the majority of dengue infections were asymptom-
atic [5,22]. A study in [39] shows, using a longitudinal blood-test
study on a cohort group in Bandung, Indonesia, an estimated
asymptomatic infection rate of 56 cases per 1000 persons per year,
while the number of reported incidence of symptomatic dengue
infections is only 18 cases per 1000 persons per year. Even when
there is no symptomatic case of dengue infection reported, they
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conclude that the estimated asymptomatic infection rate is as high
as eight cases per 1000 persons per year. This ‘iceberg phenome-
non’ is typical in dengue infection, such as shown in [21,23,36].
This has led to the division of each age class into two subclasses,
those with symptomatic infection and those with asymptomatic
infection. Typical rates for each subclass, for example, are por-
trayed in [42]. To model this situation we use a discrete or com-
partmental SIR model with an addition of a symptomatic or
severely infected class, which we assume is not contributing to
the transmission of the disease, since individuals in this class are
easily identified and most likely isolated by hospitalization.

Furthermore, we also assume that a constant rate of individuals
in the child-class is vaccinated. This can be done in a relatively
small and controllable population, e.g. in a district or town. How-
ever, since most of the infected children are asymptomatic, we
cannot differentiate between the asymptomatic infected children
and the healthy children as the target of vaccination. As a result,
there will be a portion of the infectious children, that is vaccinated
unintentionally. In this case, there is a possibility of a worsening ef-
fect, due to the presence of cross-reactive antibodies mechanism
that enhances the severity of the infection [19]. This mechanism
is complex and still not fully comprehended [18].

We devise two models, one assuming that the unintentional
vaccination increases the infectious period. Another one assumes
that unintentional vaccination leads to the development of symp-
toms. The results in this paper show that in the former case, vacci-
nation can be counter productive, in the sense that it makes the
basic reproduction number even bigger, if the worsening effect is
greater than a certain threshold. However, in the later case, that
is, if the worsening effect is to increase virulence so that the chil-
dren will develop severe symptoms, then the vaccination is always
productive.

3. Child-class vaccination with worsening effect on the sojourn
time of infection

3.1. The mathematical model

Let us assume that the total population is divided into two age
classes. The number of individuals in the child-class and the
adults-class is denoted by N1 and N2, respectively. Let us also assume
that the total number of individual in age class j at time t, i.e. NjðtÞ,
j ¼ 1;2, is composed of the number of susceptible individuals, SjðtÞ,
the number of asymptomatic infective individuals, IjðtÞ, the number
of symptomatic or severely infective individuals, DjðtÞ, and the num-
ber of recovered or immune individual, RjðtÞ. The constant recruit-
ment rates for humans and mosquitoes are B and Bv, respectively.
The natural death rates for humans and mosquitoes are l and lv,
respectively. The forces of infection for humans and mosquitoes
are functions of the biting rate per mosquito bi, and the probability
of successful infection pi in a human and pv in a mosquito, respec-
tively. The presence of the index i on the biting rate and the probabil-
ity of successful infection indicates the age-dependence of the force
of infection. A more general age-dependent force of infection is
extensively explored in [1]. Once infected, a portion r of the infected
human enters the class of asymptomatically infectious individuals,
while the remaining portion 1� r enters the class of symptomati-
cally infectious individuals. The human recovery rate is c. We as-
sume that the mosquitoes never recover once they are infected,
since they have a much shorter life time compared to the life time
of humans. In fact, the life time of the mosquitoes is almost the same
as the viruses have. Hence, the total number of mosquitoes, NvðtÞ,
consists of the susceptible, SvðtÞ, and the infectious, IvðtÞ, individuals.
Furthermore, there is an extrinsic incubation period se and intrinsic
incubation period si experienced by infected mosquitoes and in-

fected humans, respectively, before they become infectious. We as-
sume that the rate of recruitment from the child-class to the adult-
class in the human population is a ¼ 1=T , where T is the age at which
an individual in the child-class goes into the adult-class (see also
Appendix A).

To control the disease, we assume here that vaccination is only
given to individuals in the child-class, with the rate q. However, we
also assume that, since most of the infectious children are asymp-
tomatic, we cannot differentiate between these asymptomatic in-
fected children and the healthy children as the target of
vaccination. As a result, a portion x of the infectious children,
who are vaccinated un-deliberately, will get worse by having a
longer period of infection. Another possibility is that they develop
symptoms and consequently move to the category D1. Here we will
consider the former case, while the latter will be discussed in a
separate section. Assume that vaccine efficacy is s. Using these
assumptions and notations, the dynamics of the human population
is given by

dS1ðtÞ
dt

¼ B� aS1ðtÞ � lS1ðtÞ � b1p1Iv t � sið Þ S1 t � sið Þ
N t � sið Þ � sqS1ðtÞ;

ð1aÞ

dS2ðtÞ
dt

¼ aS1ðtÞ � lS2ðtÞ � b2p2Iv t � sið Þ S2 t � sið Þ
N t � sið Þ ; ð1bÞ

dI1ðtÞ
dt

¼ rb1p1Iv t � sið Þ S1 t � sið Þ
N t � sið Þ � lI1ðtÞ � ðc� qxÞI1ðtÞ � aI1ðtÞ;

ð1cÞ

dI2ðtÞ
dt

¼ rb2p2Iv t � sið Þ S2 t � sið Þ
N t � sið Þ � lI2ðtÞ � cI2ðtÞ þ aI1ðtÞ; ð1dÞ

dD1ðtÞ
dt

¼ ½1�r�b1p1Iv t�sið ÞS1 t�sið Þ
N t�sið Þ �lD1ðtÞ�cdD1ðtÞ�aD1ðtÞ;

ð1eÞ

dD2ðtÞ
dt

¼ ½1�r�b2p2Iv t�sið ÞS2 t�sið Þ
N t�sið Þ �lD2ðtÞ�cdD2ðtÞþaD1ðtÞ;

ð1fÞ

dRðtÞ
dt
¼ sqS1ðtÞþðc�qxÞI1ðtÞþcI2ðtÞþcdD1ðtÞþcdD2ðtÞ�lRðtÞ:

ð1gÞ

Meanwhile, the mosquito population dynamics is governed by

dSvðtÞ
dt

¼ Bv � b1pvI1ðtÞ þ b2pvI2 t � seð Þ½ � Sv t � seð Þ
N t � seð Þ e�lvse � lvSvðtÞ;

ð2aÞ

dIvðtÞ
dt

¼ b1pvI1 t � seð Þ þ b2pvI2 t � seð Þ½ � Sv t � seð Þ
N t � seð Þ e�lvse � lvIvðtÞ:

ð2bÞ

Note that the human and mosquito population densities at
equilibrium are N ¼ B

l and NV ¼ Bv
lv

, respectively. In Appendix A
we show the relationship between the two-age-classes model
developed here and the more general age-structured model. In
the next section we will discuss the basic reproduction number
for dengue transmission in the two-age-classes model described
by the system of Eqs. (1a)–(1g) and, (2a and 2b).

Rewriting the dynamics for the relative proportions using the
new variables eS1 ¼ S1

N , eS2 ¼ S2
N , eI1 ¼ I1

N, eI2 ¼ I2
N, eD1 ¼ D1

N , eD2 ¼ D2
N ,eR ¼ R

N, eSv ¼ Sv
Nv

, eIv ¼ Iv
Nv

, eB ¼ B
N, and eBv ¼ Bv

Nv
, we find at equilibrium

the system of equations:
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eB � aeS1 � leS1 � b1p1QeIv
eS1 � sqeS1 ¼ 0; ð3aÞ

aeS1 � leS2 � b2p2QeIv
eS2 ¼ 0; ð3bÞ

rb1p1QeIv
eS1 � leI1 � ðc� qxÞeI1 � aeI1 ¼ 0; ð3cÞ

rb2p2QeIv
eS2 � leI2 � ceI2 þ aeI1 ¼ 0; ð3dÞ

½1� r�b1p1QeIv
eS1 � leD1 � cd

eD1 � aeD1 ¼ 0; ð3eÞ
½1� r�b2p2QeIv

eS2 � leD2 � cd
eD2 þ aeD1 ¼ 0; ð3fÞ

sqeS1 þ ðc� qxÞeI1 þ ceI2 þ cd
eD1 þ cd

eD2 � leR ¼ 0; ð3gÞ

with Q ¼ Nv
N is a person index measuring the average mosquitoes per

person. Similar equilibrium equations for the mosquitoes dynamics
are given by

eBv � b1pv
eI1 þ b2pv

eI2

h ieSve�lvse � lv
eSv ¼ 0; ð4aÞ

b1pv
eI1 þ b2pv

eI2

h ieSve�lvse � lv
eIv ¼ 0: ð4bÞ

The total population of humans and mosquitoes at equilibrium
are normalized to one. In the following section we derive the basic
reproduction number for transmission of the disease, which will be
used extensively in the discussion throughout the remaining of the
paper.

3.2. The basic reproduction number

The basic reproduction number R0 is given by limn!1kKnk1=n.
Alternatively, R0 is the dominant eigenvalue of K. Here K ¼ ðkijÞ is
the next generation matrix, where kij is the expected number of
newly generated infected individuals with index i, caused by an
infective individual from the population with index j (see [10]).
In our model, i and j are elements of the set f1;2;Vg. Hence, the
next generation matrix for the system above is given by

K ¼

0 0 rb1p1Q
lv

eS�1
a

aþlþc�qx 0 rb2p2Q
lv

eS�2
e�lvse b1pv
lþc�qx

eS�v e�lvse b2pv
lþc

eS�v 0

0BBB@
1CCCA: ð5Þ

The basic reproduction number Rq for the system is the largest
eigenvalue of this matrix where eS�1 ¼ B

aþlþsq,
eS�2 ¼ a

l
B

aþlþsq, andeS�v ¼ BV
lv

are the steady state population sizes in the absence of infec-
tion. The characteristic polynomial for K is given by

FðkÞ ¼ l2
V Bðlþ c� aÞðaþ lþ c� qxÞðaþ lþ sqÞk3

� pV BVlMr p1b2
1l

2 þ b2
2p2al� lb2

1p1aþ lb2
1p1c

�
þb2

2p2acþ b2
2p2a2 � b2

2p2aqx
�
k� pV BVl2Map1b2rb1; ð6Þ

where M ¼ e�lV se . The eigen value of K may not be found explicitly.
Note that F þ pV BVl2Map1b2rb1 is antisymmetrical with respect to
k ¼ 0. The largest eigen value k0 occurs in the interval ð0;1Þ, hence
k0 > 1 if and only if Fð1Þ < 0. Here we find a threshold parameter

Rq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rpV e�lV se Q
ðaþlþ sqÞlV

lb2
1p1

ðaþcþl�qxÞþ
ab2

2p2

ðcþlÞþ
alb1b2p1

ðaþcþl�qxÞðcþlÞ

 !vuut :

ð7Þ

This threshold is different from the reproduction number eRq,
but both give the equivalent condition Rq > 1() eRq > 1. For the
remaining of the paper we will use the threshold number Rq as
the basis of the analysis. Note that the notation Rq denotes the
effective threshold number and R0 is reserved to the threshold
number in the absence of vaccination. The condition Rq ¼ 1 is re-
lated to the bifurcation parameter for the non-endemic equilib-
rium at which it becomes unstable when Rq > 1 and the endemic
equilibrium appears.

Note that the effect of biting rate is quadratic implying that
reducing the biting rate, for example by using insect repellent, is
among the most effective way in decreasing the reproduction
number. Numerical examples in Fig. 1 show that the reduction of
the biting rate has a more significant effect than the reduction of
the vector abundance does in reducing the basic reproduction
number. This is reasonable, since its effect to the reproduction
number is quadratic. Meanwhile, the effect of the vector abun-
dance is only linear. It is also worth to note that the presence of
the extrinsic time delay se also decreases the value of the repro-
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Fig. 1. (a) The effective reproduction number Rq as the biting rate reduces (lower curve) and the person index Q, i.e. the ratio of the mosquito and human densities, reduces
(upper curve) to certain percentages. The parameter values used in this figure are Q ¼ 2, x ¼ 0:1, l ¼ 1=65=365, lv ¼ 1=14, c ¼ 1=14,r ¼ 0:5, s ¼ 0:5, p1 ¼ 0:2, p2 ¼ 0:1,
pV ¼ 0:5, b1 ¼ 1, b2 ¼ 2, se ¼ 0, and a ¼ 1=14=365. The figure shows that the reduction of the biting rate is more significant than the reduction of the person index in reducing
the basic reproduction number. This is because the effect of the biting rate is quadratic, while the effect of the person index is linear. (b) The effective reproduction number Rq

as the biting rate in the adult-class reduces (upper curve), if it reduces in the child-class (middle curve), and if it reduces in both classes (lower curve) to certain percentages.
Reducing the biting rate in the child-class is more significant than it is to reduce the adult-class, since in this case, the probability of getting infected in the child-class is higher
than in the adult-class.
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duction number. This is one of the arguments why some scientists
try to reduce the life span of adult mosquitoes, genetically or by
some other means, in the attempt to control dengue.

Another way to eliminate dengue is by means of vaccination. The
dengue vaccine is being developed, it is not readily available yet for
practical uses. We have already remarked various negative effects of
vaccination, such as the prolongation of infectious period. Most of
the infectious children are asymptomatic and hence we cannot dif-
ferentiate between the asymptomatic infectious children and the
healthy children as the target of vaccination. As a result, there will
be a portion of the infectious children, that is vaccinated uninten-
tionally. Considering the effective reproduction number above, if
we are sure that all vaccination are correctly given to the susceptible
children, then the effective reproduction number is lower than the
basic reproduction number. Otherwise, if every vaccination is unin-
tentionally given to the asymptomatic infectious children, the oppo-
site will happen. In between, there is a trade off regarding the effect
of vaccination coverage q to the basic reproduction number R0. The
following section discusses this issue in greater detail.

3.3. The effectiveness and ineffectiveness of vaccination

To compare the effectiveness of the vaccination, in terms of
reducing the basic reproduction number we do as follows: first,
let us assume a ¼ 0, which is the case of a single age class, and
let P denotes the ratio of the effective reproduction number after
vaccination, Rq, and the basic reproduction number before vaccina-
tion, R0. Then we have the identity

P ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðcþ lÞ

ðlþ sqÞðcþ l� qxÞ

s
: ð8Þ

Obviously, if s ¼ 1 and x ¼ 0, then P < 1, while if s ¼ 0 and
x ¼ 1, then P > 1. We also notice that if there is no vaccination,
q ¼ 0, then there is no effect, indicated by P ¼ 1. In general, observe
that P will be less than one, that is the reproduction number in the
presence of vaccination is smaller than the reproduction number in
the absence vaccination, if and only if

x <
sðcþ lÞ
sqþ l

¼ x�: ð9Þ

In this case, x� is called the threshold for the ineffective vacci-
nation to occur. If x > x� then, instead of having a lower reproduc-
tion number, vaccination results in a higher reproduction number.
Note that the value of x� depends on the vaccination coverage con-
stant q. We conclude that the vaccination is effective, in terms of
decreasing the basic reproduction number, if and only if the wors-
ening effect x is small enough compared to the vaccine efficacy s
so that inequality (9) holds. As an illustration, Fig. 2 shows the ratio
of the effective and the basic reproduction numbers, as a function
of the vaccination coverage q, with a small value of worsening ef-
fect (Fig. 2(a)) and with a large value of the worsening effect
(Fig. 2(b)).

Note that the inequality can be rewritten as sq < sðcþlÞ�lx
x . In an

extreme situation, when s < l
ðcþlÞx, vaccination can never reduce

the basic reproduction number. In other words, no matter how
big the effort taken for vaccination is, in terms of the portion of
children being vaccinated, the basic reproduction number will in-
crease. This can be viewed as another form of the ineffectiveness
of the vaccination. The occurrence is independent of the vaccina-
tion coverage q. The last expression can be rewritten as s

x <
l

ðcþlÞ,
which shows the ratio of vaccine efficacy and the worsening effect
must be less than the ratio of the effective infectious period
1=ðcþ lÞ and the life expectancy 1=l.

Next, we look into a more general case, a–0. Here we have

P¼


ðaþlÞðaþcþlÞ

ðaþlþ sqÞðaþcþl�qxÞ 1� ap2b2
2qx

p1b2
1lþp2b2

2a
� �

ðcþlÞþa b1b2p1lþb2
2p2a

� �
0@ 1A

vuuut ;

ð10Þ

which clearly reduces to Eq. (8) whena ¼ 0. Using a similar argument
as above, there would be a threshold x�a dividing the case where the
vaccination helps or worsens. Vaccination is effective if only if

x <
s c3a3 þ c2a2 þ c1aþ b2

1p1lðlþ cÞ2
� �
d2a2 þ d1aþ b2

1p1lðlþ cÞðlþ qsÞ
¼ x�a; ð11Þ

where c3 ¼ b2
2p2, c2 ¼ b2ð2b2p2cþ 2b2lp2 þ b1p1lÞ, c1 ¼ ðlþ cÞ

ðb2
2p2cþ b2

1p1lþ b2lp1b1 þ lb2
2p2Þ, d2 ¼ b2ðqsp2b2 þ b1p1lÞ and

d1 ¼ ðqsb2
2p2cþ p1b2

1l2 þ qslb2
2p2 þ qsb2lp1b1 þlb2

1p1cþ b2l2p1b1Þ.
Again, when a ¼ 0, identity (11) reduces to x� in (9) and it can also
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Fig. 2. (a) The value of P, the ratio of the effective and basic reproduction numbers, as a function of the vaccination coverage q with a small worsening effect x ¼ 0:1. The
upper curve for a low value of the vaccine efficacy, s ¼ 0:50, and the lower curve for a high value of the vaccine efficacy, s ¼ 0:95. In both cases P < 1 if q > 0. (b) The value of P
as a function of the vaccination coverage q with a high worsening effect x ¼ 1. The upper curve for a low value of the vaccine efficacy, s ¼ 0:50, and the lower curve for a high
value of the vaccine efficacy, s ¼ 0:95. In both cases P > 1 for q > 0 large enough.
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be written as x < sðaþcþlÞX
sqXþðaþlÞY ; where X ¼ b2

2p2acþ b2alp1b1þ

p1b2
1l2 þ b2

2p2a2 þlb2
2p2aþlb2

1p1c and Y ¼ b1p1lðb1cþ b1lþ b2aÞ.
As in the previous case, no vaccination coverage succeeds in reduc-

ing the basic reproduction number if sðYþb2p2laÞ
xY < ðaþlÞ

ðaþcþlÞ, or if the ra-

tio between vaccine efficacy and the worsening effect is too small.
Fig. 2 shows the value of P as a function of vaccination coverage
q. It reveals that for a small worsening effect x, P is always less than
one (Fig. 2(a)). However, when the worsening effect x is sufficiently
high (Fig. 2(b)), P > 1 for sufficiently large vaccination coverage q.
The effective reproduction numbers for both cases are illustrated
in Fig. 3. It is worth to note, although theoretically vaccination
ineffectiveness may occur, practically for most of the realistic
parameters of the model, the x-region for this ineffectiveness
to occur is very small, as indicated by the numerical example
in Fig. 4.

3.4. The critical level of vaccination

The next important question is to what extent the vaccination
effort is needed to eliminate the disease. Here we will assume that
x < x�a, so that vaccination is effective. Note that in Eq. (7), the
second term in the right hand side is the adult contribution to
the basic reproduction number. In what follows we will assume
thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rpV e�lV se Q
ðaþ lÞlV

ab2
2p2

cþ l

 !vuut < 1; ð12Þ

that is, the presence of adults alone cannot sustain the presence of
the disease. So it is plausible that vaccination is addressed to the
child-class. To eliminate the disease we require that a condition
that R2

q in Eq. (7) to be less than one. It is easy to show that if
x ¼ 0, the condition is equivalent to

q > R2
0 � 1

� � ðaþ lÞ
s

: ð13Þ

However, if x–0 then the condition is more complicated and

takes form as q > ðR2
0 � 1Þ ðaþlþcÞðlþcÞ

ðaAb2
2p2�ðcþlÞÞx

, where A ¼ rpV e�lV seQ
ðaþlþsqÞlV

. The

last inequality is a general rule for vaccinating the child-class such
that the effective reproduction number is less than one, when there

is a worsening effect of vaccination. Note that in a special case,
when a ¼ 0 and there is no worsening effect of vaccination, from
inequality (13) we have sq

l > R2
0 � 1. This can be regarded as vacci-

nating the whole population without distinction between adults
and children with vaccination coverage q. In this case the known
rule of thumb for vaccination is recovered, except for the presence
of the square [9].

4. Child-class vaccination with worsening effect on the disease
virulence

In the previous section we have assumed that as a result of un-
deliberate vaccination of infected children, a portion x of them
will be infectious during a longer period of time. Another possibil-
ity is that they develop severe symptoms due to increased viru-
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Fig. 3. (a) The effective reproduction number Rq when the vaccination rate is low and reveals that low vaccination rates generate effective reproduction numbers that are
lower than the basic reproduction number before vaccination. (b) The effective reproduction number Rq when the vaccination rate is very high which may yield a higher
effective reproduction number compared to the basic reproduction number R0. The parameter values used are the same as in Fig. 1.
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Fig. 4. The figure shows the graph of the relative vaccine efficacy qs as a function of
the relative worsening effect qx. Other parameters are given, i.e. l ¼ 1=65=365,
c ¼ 1=14, p1 ¼ 0:2, p2 ¼ 0:1, b1 ¼ 2, b2 ¼ 0:5. The region where the vaccination is
counter productive is below the curve, where qs < qx. This area is relatively small
compared to all possible realistic combination of qs and qx parameters. The value
of a is zero for the lowest curve. The middle and the upper curves have a medium
and high value of a, respectively.
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lence, and that they move to the category of D1 as a consequence.
Basically the equations are the same except the term qxI1ðtÞ in Eq.
(1c) has the opposite sign to express an outflow into the class D1.
Doing so will give the effective reproduction number

Rq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rpve�lV se Q
ðaþ lþ sqÞlV

lb2
1p1

ðcþ lþ aþ qxÞ þ
ab2

2p2

ðcþ lÞ

 !vuut : ð14Þ

Unlike in the previous model, here the vaccination is always
effective since

Rq

R0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþlÞ
ðaþlþ sqÞ

ðcþlþaÞ
ðcþlþaþqxÞ

b2
1p1lðcþlÞþb2

2p2aðcþlþaþqxÞ
b2

1p1lðcþlÞþb2
2p2aðcþlþaÞ

vuut ;

ð15Þ

which is obviously always less than 1. In this case the critical level
of vaccination is similar to inequality (13) with the opposite sign of
qx terms.

In the previous model (Section 3) we have assumed a scenario
in which a health manager does not realize the presence of the
infectious classes Ij. We call this as an ignorant scenario of a vacci-
nation program. In this case the vaccination effort is set at a level of
coverage q and enforced to the ‘assumed’ susceptible part of the
population, which is S1 þ I1 instead of S1. This may result in wast-
ing vaccination effort besides, in some circumstances, creates an
ineffective vaccination if the model in Section 3 is believed to be
true. Although in terms of reducing the basic reproduction number,
the model in Section 4 predicts that vaccination is always effective,
ethically, we should avoid the chance of vaccinating asymptomatic
infected individuals that may lead to more severe symptom for
them.

We can consider another scenario, where the manager realizes
the presence of the asymptomatic infectious classes Ij, but still can-
not identify to which class an individual belongs. In this case, a
portion p of vaccination is given after screening to ensure that
the vaccine is given to individuals of the true susceptible child-
class. The remaining portion is given randomly to presumably sus-
ceptible individuals with successful probability of finding the truly
susceptible is r. In this scenario, the effective reproduction number
in Eq. (7) changes. As a result the measure of vaccination effective-
ness also changes. For example, if a ¼ 0, it is given by

P ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðcþ lÞ

ðlþ ðpþ ð1� pÞrÞsqÞðcþ l� ð1� pÞð1� rÞqxÞ

s
: ð16Þ

Clearly if p tends to one, then P is always less than one. Further-
more, the condition for avoiding the ineffectiveness of the vaccina-
tion in inequality (9) also changes into

x < ðlþ cÞs pþ rð1� pÞ
ð1� pÞð1� rÞðsqðrð1� pÞ þ pÞ þ lÞ ; ð17Þ

which always holds if p is sufficiently close to one. These suggest
that screening is necessary to gain an effective vaccination program.
Furthermore, screening can also save the unnecessary effort of vac-
cinating infectious children.

5. Concluding remarks

We have discussed a two-age-classes dengue transmission
model and assumed that a negative effect of vaccination might oc-
cur. If there is an undeliberate vaccination of asymptomatic infec-
tious children that effectively enlarges the infectious period, then a
paradox of vaccination might occur. The paradox, stating that vac-
cination makes the basic reproduction number bigger, might occur
if the worsening effect is greater than a certain threshold. The
threshold is a function of the human demographic and epidemio-

logical parameters, which might be independent of the level of vac-
cination. Although the region of the realistic parameters in which
the vaccination might happen is regarded as a small region, still
this paradox must be avoided. It can be avoided, for example, by
screening the target population before vaccination. However, if
the worsening effect increases virulence so that one will develop
symptoms, then the vaccination always helps in reducing the basic
reproduction number. Further work can be done by explicitly mod-
eling the mechanism of the second and third infections via the
introduction of multiple strains of viruses. Severe infection can
be modeled as a result of certain combinations of consecutive
infections by different strains of viruses [39]. Improvement of the
model can also be accomplished by considering a different age dis-
tribution in the child-class.
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Appendix A

Without loss of generality, let us concentrate on the susceptible
child-class. The analogous partial differential equation for Eq. (1a)
is given by:

@s1ðt; aÞ
dt

þ @s1ðt; aÞ
da

¼ �ls1ðt; aÞ � b1p1IvðtÞ
s1ðt; aÞ

N
� qs1ðt; aÞ;

ðA:1Þ

with

s1ðt;0Þ ¼ B: ðA:2Þ

Suppose that T is the final age of the child-class, and let us as-
sume that s1ðt; TÞ ¼ s2ðt; TÞ or in the other words the starting age
of the adult-class is the final age of the child-class. Let

S1ðtÞ ¼
Z T

0
s1ðt; aÞda: ðA:3Þ

The integration of Eq. (A.1) with the respect to age along the
interval ½0; T� gives

dS1ðtÞ
dt

¼ B� s1ðt; TÞ � lS1ðtÞ � b1p1IvðtÞ
S1ðtÞ

N
� qS1ðtÞ: ðA:4Þ

Hence Eq. (1a) is obtained if we have the relation
s1ðt; TÞ ¼ aS1ðtÞ. This relation can be obtained for a certain choice
of a. Note that from A.3, and using the Mean Value Theorem, there
exists T� 2 ð0; TÞ such that

S1ðtÞ ¼
Z T

0
s1ðt; aÞda ¼ Ts1ðt; T�Þ: ðA:5Þ

Moreover, by the Taylor expansion for a fixed t yields

s1 t; T�ð Þ ¼ s1ðt; TÞ þ s01ðt; TÞ T� � Tð Þ þ 1
2

T2s001 t; T1ð Þ T�

T
� 1

� �2

;

ðA:6Þ

for some T� < T1 < T . We consider a type of population distribution

sðt; aÞ in which for any t > 0, dsðt;TÞ
da ¼ 0 and j d

2sðt;TÞ
da2 j << 1 for some

T > 0. This assumption represents a real condition in some region
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(see [3]) where the population distribution is slowly increasing
from the new born age to the transition age T reaching its maximum
at T, and relatively flat around T. Hence, if we choose T such that
s01ðt; TÞ ¼ 0 and assuming that js001ðt; T1Þj � 2

T2, then from (A.6) we

have s1ðt; T�Þ � s1ðt; TÞ. Consequently, by choosing a ¼ 1
T the re-

quired relation is obtained.
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