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In this paper we present a deterministic, discrete-time model for a two-patch
predator–prey metapopulation. We study optimal harvesting for the metapopula-
tion using dynamic programming. Some rules are established as generalizations
of rules for a single-species metapopulation harvesting theory. We also establish
rules to harvest relatively more (or less) vulnerable prey subpopulations and more
(or less) efficient predator subpopulations.
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1. INTRODUCTION

All marine populations show some degree of spatial heterogeneity. Sometimes
this spatial heterogeneity means that modelling the species as one single pop-
ulation is not adequate. For example, abalone, Haliotis rubra, has a discrete
metapopulation structure with local populations connected by the dispersal of
their larvae (Prince et al., 1987; Prince 1992). Brown and Murray (1992) and
Shepherd and Brown (1993) argue that management for abalone should depend
on the characteristics of local populations. Frank (1992) provides another exam-
ple of the metapopulation structure. He points out that fish stocks, such as the
cod of Iceland and West Greenland, which are separated by a large distance, and
the two haddock stocks of the Scotian Shelf, are known to be strongly coupled
by the dispersal of individuals. He also suggests that those stocks possess the
‘source/sink’ property described by Sinclair (1988) and Pulliam (1988), that is,
persistence of the population in a sink habitat can be maintained by the migration
from a source habitat. Source/sink habitat will be defined precisely in the next
section. Furthermore, Frank and Leggett (1994) argue that the collapse of major
fisheries such as North Atlantic Cod and Atlantic and Pacific Salmon, is due to
the over-exploitation of the source population.
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Despite the importance of spatial heterogeneity, increasing the complexity of a
population model by adding spatial heterogeneity is rarely done in fishery man-
agement modeling, even for single species (Clark, 1984). Exceptions are Clark
(1976), Tuck and Possingham (1994) and Brown and Roughgarden (1997) for
a single species, and Hilborn and Walters (1987), Leung (1995), and Murphy
(1995) for multiple species. In this paper we present a model for a spatially
structured predator–prey population. We address the issues of spatial structure
and predator–prey interaction, and study optimal harvesting for the metapopu-
lation. We use metapopulation theory to describe the spatial structure of the
predator–prey system. Using this approach, we obtain the optimal harvest for
each local population which gives important information on how we should har-
vest a population if management can be specified for local populations, such as
abalone.

2. THE MODEL

This section describes a deterministic, discrete-time model for a spatially struc-
tured predator–prey system. The model has similar structure and assumptions to
that described in Tuck and Possingham (1994).

Assume that there is a predator–prey population in each of two different patches,
namely patch 1 and patch 2. Let the movement of individuals between the local
populations be caused by the dispersal of the juveniles. Predation occurs on adult
prey, and larval dispersal and production are independent of the other species.
Let the population size of the prey and predator on patch i at the beginning of
period k be denoted by Nik and Pik respectively. The proportion of prey and
predator juveniles from patch i that successfully migrate to patch j are pi j and qi j

respectively (Fig. 1). If the amount of harvest taken from the prey and predator
stocks in patch i at the beginning of period k are HNik and HPik respectively, let
SNik = Nik − HNik and SPik = Pik − HPik be prey and predator escapements on
patch i at the end of that period. These escapements determine the growth of
the population after exploitation. Furthermore, let the dynamics of the exploited
prey and predator population be given by the equations:

Ni (k+1) = ai SNik − αi SNik SPik + pii Fi (SNik )+ pji Fj (SNjk ), (1)

Pi (k+1) = bi SPik + βi SNik SPik + qii Gi (SPik )+ qji G j (SPjk ), (2)

where ai and bi denote the survival rate of adult prey and adult predator in patch
i respectively. The functions Fi (Nik) and Gi (Pik) are the recruit production
functions of the prey and the predator on patch i in time period k. We will
assume that the recruit production functions are logistic for the remainder of this
paper, that is, Fi (Nik) = ri Nik(1 − Nik/Ki ) and Gi (Pik) = si Pik (1− Pik/Li ),
where ri and si denotes the intrinsic growth of the prey and predator respectively,
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Figure 1. The predator–prey metapopulation diagram for a two-patch model. The
numbers of predator and prey subpopulations i are indicated by Pi and Ni respectively,
their juvenile migration rate are qi j and pi j respectively.

and Ki and Li denotes the prey and predator carrying capacities respectively, with
αi > 0 and βi > 0.

Using present value maximization (Clark, 1976), the objective of a sole-owner
is to maximize the net revenue from harvesting each subpopulation of the prey
and the predator up to the time horizon t = T . If 5Xi represents the present
value of net revenue resulting from harvesting population X in patch i , and ρ is
a discount factor, then the sole-owner should maximize net present value

PV =
T∑

k=0

ρk
2∑

i=1

P∑
X=N

5Xi (Xik, SXik ) (3)

subject to equations (1) and (2), with non-negative escapement less than or equal
to the population size. We will assume ρ = 1/(1+ δ) for the remainder of this
paper, where δ denotes a periodic discount rate.

If there is no discount rate (δ = 0) then the net revenue (3) in any period
generated by escapements SNi and SPi has exactly the same value to the net
revenue from the same escapements in any other periods. Hence, we only need
to find optimal escapements for one period to go. The resulting revenue by
applying this zero discount rate is often known as maximum economic yield
(MEY). If the discount rate is extremely high (δ −→ ∞) then the net revenue
(3) approaches

PV∞ =
2∑

i=1

P∑
X=N

5Xi (Xi 0, SXi 0), (4)

which is the immediate net revenue without considering the future and is maxi-
mized by optimal escapements S∗Xi∞ . We use the symbol ‘∞’ to indicate that the
exploiter only cares about profit this period, which is the same as applying the
large discount rate δ −→∞. It can be regarded as an open-access exploitation.

The net revenue for a two-patch predator–prey population from the harvest
HXik of the sub-population Xi in period k is

5Xi (Xik, SXik ) =
∫ Xik

SXik

(pX − cXi (ξ))dξ, (5)
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where pX is the price of the harvested stock X and is assumed to be constant,
while cXi is the unit cost of harvesting and is assumed to be a non-increasing
function of Xi and may depend on the location of the stock. To obtain the optimal
harvest for a two-patch predator–prey population we define a value function

JT (N10, N20, P10, P20) = max
0≤SXi 0≤Xi 0

(
T∑

k=0

ρk
2∑

i=1

P∑
X=N

5Xi (Xik, SXik )

)
(6)

which is the sum of the discounted net revenue resulting from harvesting both
populations in both locations up to period t = T . This function is maximized by
choosing appropriate optimal escapements S∗Xik

. Equation (6) is used recursively
to obtain the value function at time T + 1, that is

JT+1(N10, N20, P10, P20)= max
0≤SXi 0≤Xi 0

(
ρ JT (N11, N21, P11, P21)

+
2∑

i=1

P∑
X=N

5Xi (Xi 0, SXi 0)

)
. (7)

Thus the optimal escapements, S∗Ni 0
and S∗Pi 0

, for a two-patch predator–prey sys-
tem can be found by iterating this equation back from time T .

First, consider the net revenue in equation (6) for time horizon T = 0. The
resulting net revenue, J0(N10, N20, P10, P20), represents immediate net revenue
taken from the next harvest without considering the future value of the harvest,
hence the maximum value is exactly the same as the maximum value of PV∞ in
(4). We consider two cases.

CASE 1. If the unit cost of harvesting is constant, let cXi (Xi ) = cXi , then pX−cXi

in (5) is constant. Hence, the integral in (5), and thus PV∞ in (4), is maximized
by S∗Xi∞ satisfying

S∗Xi∞ =
{

Xi if pX ≤ cXi

0 if pX > cXi .
(8)

Therefore, if the unit cost of harvesting is constant and lower than the unit
price of harvested stock then it is optimal to drive the stock to extinction (see
also Fig. 2 for a relatively large discount rate). On the other hand, if the unit cost
of harvesting is constant and greater than or equal to the unit price of harvested
stock then we should not harvest the stock at all.

CASE 2. If the unit cost of harvesting is not constant then PV∞ in (4) is maxi-
mized by S∗Ni∞ and S∗Pi∞ satisfying

∂5Xi (Xi 0,SXi 0 )

∂SXi 0

∣∣∣
SXi 0=S∗Xi∞

= 0. Differentiate the in-

tegral in (5) with respect to S∗Xi 0
to obtain pN−cN(S∗Ni∞) = 0 and pP−cP(S∗Pi∞) =

0. The last two equations say that optimal escapements occur if the marginal rev-
enue equals the marginal value of cost. This condition is known as ‘bionomic
equilibrium’ (Gordon, 1954).
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Figure 2. Contour plot for the profit in (3) as a function of (a) predator escapements and
(b) prey escapements, calculated in millions unit with discount rate 10%. Escapements
SP1 = 14,505 and SP2 = 9010 are found as the predator optimal escapements (a) and
escapements SN1 = SN2 = 145,050 are found as the prey optimal escapements (b). The
symbol ‘×’ indicates the position of equilibrium escapements for various discount rates,
e.g. ×0% indicates the position with no discount rate.

Next, to obtain the net revenue for time horizon T = 1 we substitute these
immediate escapements into equation (7). As in the case for the time horizon
T = 0, to maximize the revenue, we use the necessary conditions for optimality
by differentiating the resulting equation with respect to escapements for the time
horizon T = 1, that is SNi 0 and SPi 0 . This procedure yields

pN − cNi (S
∗
Ni 0
)

ρ
= (ai − αi S

∗
Pi 0
+ pii F ′i (S

∗
Ni 0
))(pN − cNi (Ni 1))

+(pi j F ′i (S
∗
Ni 0
))(pN − cNj (Nj 1))

+βi S
∗
Pi 0
(pP − cPi (Pi 1)), (9)
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pP − cPi (S
∗
Pi 0
)

ρ
= (bi + βi S

∗
Ni 0
+ qii G

′
i (S
∗
Pi 0
))(pP − cPi (Pi 1))

+(qi j G
′
i (S
∗
Pi 0
))(pP − cPj (Pj 1))

−αi S
∗
Ni 0
(pN − cNi (Ni 1)). (10)

These equations are the general form of the optimal harvesting equation for a two-
patch predator–prey population system. The escapements S∗Xi 0

found by solving
these equations are the optimum escapements of the prey and the predator on
each patch that maximize revenue provided the Hessian matrix J ′′1 (SN10, SN20,
SP10, SP20) satisfies [J ′′1 (S

∗
X)(SX − S∗X)] · [SX − S∗X] < 0 where SX = (SN10, SN20,

SP10, SP20) and S∗X = (S∗N10, S∗N20, S∗P10, S∗P20). It can be shown that these optimal
escapements of predator–prey metapopulation are independent of the time horizon
considered.

3. RESULTS AND DISCUSSION

In this section, the optimal escapements in equations (9) and (10) are compared
with the strategies in which spatial structure is ignored. The rationale for this is
that we want to know how important it is to use the theory presented here for
choosing optimal escapements. We consider two ways in which spatial structure
can be ignored. First, the whole system can be considered a well-mixed homo-
geneous population. Secondly, the existence of the patches is recognized, but we
assume that there is no migration of individuals between patches. Our optimal
escapements from a two-patch connected predator–prey model are compared with
those systems in which spatial structure is ignored.

We adopt the following definitions about the characteristics of local populations
from Tuck and Possingham (1994).

1. Prey subpopulation i is a relative exporter prey subpopulation if it exports
more larvae to the prey subpopulation j than it imports (per capita), that
is r1 p12 > r2 p21. In this case, prey subpopulation j is called a relative im-
porter prey subpopulation. Relative exporter and relative importer predator
subpopulations are defined similarly.

2. Prey subpopulation i is a relative source prey subpopulation if its per capita
larval production is greater than the per capita larval production of prey
subpopulation j , that is ri (pii + pi j ) > r j (pj j + pji ). In this case, prey
subpopulation j is called a relative sink subpopulation. Relative source
and relative sink predator subpopulations are defined similarly.

Optimal harvesting equations for an unconnected and well-mixed predator–prey
population can be obtained from equations (9) and (10) by assigning pi j = qi j = 0
for i 6= j , and pii = qii = 1, i = 1, 2. However, if we incorrectly consider there
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is no connection between subpopulations, we would measure the growth rate for
prey subpopulation i as

riu = ri pii + r j pji . (11)

If it is considered a well-mixed predator–prey system, then the per capita growth
of the whole prey population is

rw = (ri (pii + pi j )+ r j (pj j + pji ))/2. (12)

The growth rate for the predator is measured similarly. In addition, we define
the following terms:

3. Prey subpopulation i is a relatively more vulnerable prey subpopulation
to predation if αi > α j . In this case, prey subpopulation j is called a
relatively less vulnerable subpopulation.

4. Let αi = α j or βi = β j . If−αi+βi > −α j+β j then predator subpopulation
i is called a relatively more efficient predator subpopulation. In this case,
predator subpopulation j is called a relatively less efficient subpopulation.

3.1. The case of negligible costs.To simplify the analysis and obtain explicit
expressions for the optimal escapements, we assume the costs of harvesting are
negligible and there is no difference between the price of the prey and predator.
Using these assumptions, and substituting all derivatives of the logistic recruit-
ment functions, Fi and Gi , equations (9) and (10) become

1

ρ
= ai + (pi 1 + pi 2)

(
ri − 2ri

Ki
SNi

)
+ (−αi + βi )SPi , (13)

1

ρ
= bi + (qi 1 + qi 2)

(
si − 2si

Li
SPi

)
+ (−αi + βi )SNi . (14)

Let Ai = 1
ρ
− (pi 1+ pi 2)ri − ai , Bi = 1

ρ
− (qi 1+ qi 2)si − bi , and Ci = −αi + βi .

Solving equations (13) and (14) produces explicit expressions for the optimal
escapements S∗Ni

and S∗Pi

S∗Ni
=

Ai (qi 1 + qi 2)
2si
Li
+ Ci Bi

1i
, (15)

S∗Pi
=

Bi (pi 1 + pi 2)
2ri
Ki
+ Ci Ai

1i
, (16)

provided 1i = C2
i − (pi 1+ pi 2)

2ri
Ki
(qi 1+ qi 2)

2si
Li
6= 0. In the case of αi = βi = 0,

equation (15) determines optimal escapement for a single-species metapopulation.
Tuck and Possingham (1994) find some rules of thumb for harvesting a single-
species metapopulation system. That is if we use single-species metapopulation
harvesting theory, then:
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1. A relative source subpopulation would be harvested more conservatively
than a relative sink subpopulation.

2. A relative exporter subpopulation would be harvested more conservatively
than if we use unconnected single-species population theory, while a rela-
tive importer subpopulation would be harvested more heavily.

3. A relative source subpopulation would be harvested more conservatively
than if we use well-mixed single-species population theory, while a relative
sink subpopulation would be harvested more heavily.

If Ai and Bi are negative and Ci non-positive with Ci > max{ 2Bi
Ki
, 2Ai

Li
} then

the escapements in (15) and (16) can be shown to be always positive. An inter-
pretation of the condition Ai < 0 is that the sum of the proportion of surviving
adults (that can survive to the next period ai ) and the per capita larval produc-
tion (product of intrinsic growth and the proportion of juveniles that remain in
the system (pii + pi j )ri ) is higher than the discount rate 1/ρ. This is a normal
situation, otherwise equations (15) and (16) may produce negative escapements,
which means it is economically optimal to harvest the populations to extinc-
tion (Clark, 1976). The condition Bi < 0 is interpreted similarly, while Ci is
non-positive with Ci > max{ 2Bi

Ki
, 2Ai

Li
} interpreted as a high predator efficiency.

Hence, if one of the populations has a very high adult mortality, a very small
intrinsic growth, a very high proportion of juveniles lost from the system, or a
very small predator efficiency then extinction may be optimal. Extinction is also
observed by Horwood (1990) when only the prey species is harvested and the
prey has a Beverton–Holt recruit production function.

To give a clear insight into how our predator–prey metapopulation optimal es-
capements differ from spatially unstructured predator–prey optimal escapements,
we construct the following results. We assume the predator has a symmetric
migration, that is s1m = s2m = sm, in all results that follow.

RESULT 1. Let one of the prey subpopulations be a relative source while all other
parameters of the prey and the predator are identical for both subpopulations. We
assume the prey subpopulation 1 is a relative source, that is (p11 + p12)r1 >

(p22 + p21)r2. If α = β, or if Ai and Bi are negative and Ci is non-positive with
Ci > max{ 2Bi

K ,
2Ai
L }, then

S∗N1
> S∗N2

and S∗P1
≤ S∗P2

.

We conclude, from Result 1, that if predator efficiency is relatively high (Ci >

max{ 2Bi
K ,

2Ai
L }) then we should protect the relative source prey subpopulation in

two different ways. Directly, with a higher escapement of the relative source prey
subpopulation, and indirectly, with a lower escapement of the predator living in
the same patch with the relative source prey subpopulation.

The previous result allows us to compare our predator–prey optimal escape-
ments between different patches. Up to this point, we conclude that if predator
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efficiency is relatively high, then the first rule of thumb from single metapopu-
lation harvesting theory is preserved, that is we should harvest a relative source
subpopulation more conservatively than a relative sink subpopulation. To see
how important and how different our predator–prey metapopulation escapements
compare with the escapements which occur if we incorrectly consider the popu-
lation as a spatially unstructured system, we construct the following results.

RESULT 2 (COMPARISON WITH AN UNCONNECTED TWO-PATCH PRED-
ATOR–PREY SYSTEM). Let S∗Ni

and S∗Pi
denote the optimal escapements from

the predator–prey metapopulation given by equations (15) and (16), and let S∗Niu

and S∗Piu
denote the optimal escapements if we incorrectly consider the system as

a system consisting of two unconnected predator–prey systems. Assume that one
of the prey subpopulations is a relative exporter and also a relative source while
all other parameters of the prey and the predator are identical for both subpopu-
lations. Without loss of generality let p12r1 > p21r2 and p11r1 ≥ p22r2. If Ai and
Bi are negative and Ci is non-positive with Ci > max{ 2Bi

K ,
2Ai
L }, then

S∗N1
> S∗N1u

, S∗N2
< S∗N2u

, S∗P1
≤ S∗P1u

, S∗P2
≥ S∗P2u

,

S∗N1
+ S∗N2

≤ S∗N1u
+ S∗N2u

, and S∗P1
+ S∗P2

≥ S∗P1u
+ S∗P2u

.

RESULT 3 (COMPARISON TO A WELL-MIXED PREDATOR–PREY SYSTEM).
Let S∗Ni

and S∗Pi
denote the optimal escapements from the predator–prey metapop-

ulation given by equations (15) and (16), and let S∗Nw and S∗Pw denote the optimal
escapements if the predator–prey metapopulation system is incorrectly considered
as a well-mixed predator–prey system. If all hypothesis and assumptions of the
Result 2 are satisfied and in addition if Ci satisfies

Ci

(
Bi C

2
i +

3( 1
ρ
− a− rw)sm

L
Ci − 2Bi rwsm

K L

)
= 0,

then

S∗N1
>

1

2
S∗Nw, S∗N2

<
1

2
S∗Nw, S∗P1

≤ 1

2
S∗Pw, S∗P2

≥ 1

2
S∗Pw

S∗N1
+ S∗N2

≤ S∗Nw, and S∗P1
+ S∗P2

≥ S∗Pw .

Results 1, 2 and 3 are the generalizations of the rules of thumb in Tuck and
Possingham (1994) for harvesting a single-species metapopulation. In addition to
the rules summarized in these results, we also established rules to harvest more
(less) vulnerable prey and more (less) efficient predator subpopulations. These
rules are summarized in the following result.

RESULT 4. Without loss of generality assume that the predator subpopulation 1
is relatively more efficient, that is C1 > C2, but other parameters are identical
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to subpopulation 2. If A1 = A2 = A and B1 = B2 = B are negative, and Ci is
non-positive with Ci > max{− rmB

AK ,− smA
BL }, then

S∗N1
> S∗N2

and S∗P1
> S∗P2

.

Result 4 suggests that to harvest a predator–prey metapopulation optimally,
we should leave both subpopulations living in the patch with a relatively more
efficient predator with higher escapements than the other subpopulations. A
special case is when β1 = β2. In this case, we should leave both subpopulations
living in the patch with relatively less vulnerable prey higher escapements than
the other subpopulations. Similar results as in Results 1–3 can also be established
if we assume the prey has a symmetric migration and one of the predators is a
relative source subpopulation. We illustrate the result for this asymmetric predator
migration in the following numerical example.

3.2. A numerical example with negligible costs.In this section, a numerical
example is presented to illustrate and to compare our two-patch predator–prey
optimal escapements. For the purpose of comparison, parameters for the prey
and predator population are similar to those in Tuck and Possingham (1994).

Assume that the prey in both patches have carrying capacities K1 = K2 =
400,000, with intrinsic growth r1 = r2 = 1000 and adult survival per period
a1 = a2 = 0.001. The juveniles migrate symmetrically, that is p11 = p22 =
0.001 and p12 = p21 = 0.003, hence there is no relative source/sink and ex-
porter/importer prey subpopulation. Assume the discounting rate δ is 10%. Be-
fore the exploitation begins, it is assumed that the population is in the equilibrium
state. In the absence of the predator, the unharvested population sizes for prey
subpopulations 1 and 2 are N̄1 = N̄2 = 300,100. Using equation (15) with
Ci = 0, we find the optimal escapements for the prey subpopulations 1 and 2 are
S∗N1s
= S∗N2s

= 145,050, hence both prey subpopulations are harvested equally
with first-period optimal harvests H ∗N1s

= H ∗N2s
= 155,050 and equilibrium opti-

mal harvests H ∗N1s
= H ∗N2s

= 224,900.
Now suppose the predator (Pi ) is present. Let the intrinsic growth of the

predator be s1 = s2 = 1000 with the carrying capacities L1 = L2 = 40,000. We
assume the adult survival per period of the predator is no different from the adult
survival of the prey and no different between patches, hence b1 = b2 = 0.001.
The predator on patch 1 is assumed to be a more relative source/exporter than
the predator on patch 2, with the migration parameters q11 = q21 = q22 = 0.001,
and q12 = 0.003. Let αi = βi = 0.00001, that is we assume the predator has
a high conversion efficiency. Using NAG routine c05nbf, we find one of the
positive equilibrium population sizes for this two-patch predator–prey system,
that is (N̄1, N̄2, P̄1, P̄2) = (270,581, 205,331, 43,248, 76,676) from equations (1)
and (2).

Using equations (15) and (16), we find the optimal escapement for the system
S∗N1
= S∗N2

= 145,050 and S∗P1
= 14,505 and S∗P2

= 9010 (Fig. 2). These
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escapements are the same as those of a single-species metapopulation since we
have αi = βi for each patch. However, the optimal harvests are different. In this
case, we find the first period optimal harvests H ∗N1

= 125,531, H ∗N2
= 60,281,

H ∗P1
= 28,743, H ∗P2

= 6766, and the equilibrium optimal harvests H ∗N1
= 203,861,

H ∗N2
= 211,831, H ∗P1

= 22,775, and H ∗P2
= 38,784. As expected, because there is

no source/sink or exporter/importer prey subpopulation, using both methods we
harvest predator subpopulation 1 more conservatively than predator subpopulation
2. In this case H ∗P1

= 22,775 and H ∗P2
= 38,784 from two-patch predator–

prey escapements, while H ∗P1s
= 1735 and H ∗P2s

= 25,715 from single-species
metapopulation escapements.

Even though the degree of predator–prey interaction is very low, that is small
α and small β, optimal harvests from a single-species metapopulation and from
a predator–prey metapopulation can be very different quantitatively. In general,
if Ci ≤ 0, then the optimal escapement from a predator–prey metapopulation is
less than or equal to optimal escapement from a single-species metapopulation.
As a result, if we use optimal escapement from a single-species metapopulation
as a policy to manage a predator–prey metapopulation system, then we might
under harvest the stocks. On the other hand, if we use optimal harvest from
a single metapopulation, we might over harvest the prey and under harvest the
predator. Next, we compare the optimal escapements and equilibrium harvests
from a predator–prey metapopulation to the optimal escapements and equilibrium
harvests if spatial structure is not considered in the system.

Table 1. Escapements and harvests comparison between correct and incorrect assumption
with pN = pP .
PPM S∗N1

= 145,050 H∗N1
= 203,861 S∗P1

= 14,505 H∗P1
= 22,775

S∗N2
= 145,050 H∗N2

= 211,831 S∗P2
= 9010 H∗P2

= 38,784

S∗N = 290,100 H∗N = 415,692 S∗P = 23,515 H∗P = 61,559

UPP S∗N1u
= 145,050 H∗N1u

= 211,831 S∗P1u
= 9010 H∗P1u

= 20,294
S∗N2u
= 145,050 H∗N2u

= 203,861 S∗P2u
= 14,505 H∗P2u

= 36,736

S∗Nu
= 290,100 H∗Nu

= 415,692 S∗Pu
= 23,515 H∗Pu

= 57,030

WPP S∗Nw = 290,100 H∗Nw = 413,036 S∗Pw = 25,346 H∗Pw = 63,391

PPM, predator–prey metapopulation,
UPP, unconnected predator–prey population,
WPP, well-mixed predator–prey population.

First, if our predator–prey metapopulation system is incorrectly considered as
an unconnected two-patch predator–prey system, then the optimal escapements
are found from equations (15) and (16) by replacing pii , pi j ,qii and qi j with 1,
0, 1 and 0 respectively, and replacing (pii + pi j )ri and (qii +qi j )si with riu given
by equation (11), and (qii + qi j )si is replaced by siu similarly. The resulting
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escapements are S∗N1u
= S∗N2s

= 145,050, S∗P1u
= 9010, and S∗P2u

= 14,505. The
harvesting strategy from these escapements produces optimal equilibrium har-
vests H ∗N1u

= 211,831, H ∗N2u
= 203,861, H ∗P1

= 20,294, and H ∗P2
= 36,736 with

total harvest H ∗u = H ∗Nu
+HPu = 472,722. This total harvest is less than the total

harvest if we correctly use a predator–prey metapopulation escapements, that is
H ∗ = H ∗N + H ∗P = 477,251 (see Table 1). This is because if we use unconnected
predator–prey theory, we fail to recognize the exporter predator subpopulation
which is important as a contributor to the other predator subpopulation. In this
case, we exploit the relative exporter predator too heavily, with escapement only
9010, while the relative importer predator is harvested too conservatively with
escapement 14,505. We note that there is no difference to the total harvest from
the prey, and that the difference is only to the harvest from individual patches.
If we use the harvesting strategy from unconnected two-patch predator–prey es-
capements, we over harvest the prey living in the same patch with the relative
exporter predator, while the prey living in the same patch with the relative im-
porter predator is under harvested. In conclusion, in this example, compared with
the harvesting strategy from unconnected two-patch predator–prey escapements,
the harvesting strategy from a predator–prey metapopulation gives a higher total
harvest while it leaves the relative exporter predator a higher escapement.

Secondly, if our predator–prey metapopulation system is incorrectly considered
as a well-mixed predator–prey system, then the optimal escapements are found
from equations (15) and (16) by replacing pii , pi j ,qii and qi j with 1, 0, 1 and 0
respectively, and replacing (pii + pi j )ri and (qii + qi j )si with rw given by equa-
tion (12), and (qii +qi j )si is replaced by sw similarly. The resulting escapements
are S∗Nw = 290,100 and S∗Pw = 25,346. The harvesting strategy from these escape-
ments produces optimal equilibrium harvests H ∗Nw = 413,034 and H ∗Pw = 63,392
with total harvest H ∗w = H ∗Nw + HPw = 476,426. This total harvest is less than
the total harvest from the predator–prey metapopulation, that is H ∗ = 477,251
(see Table 1). As indicated by Result 3, using the escapement from a well-mixed
predator–prey population would over harvest the relative source predator sub-
population (P1) and under harvest the relative sink predator subpopulation (P2),
since S∗P1

= 14,505 > S∗Pw/2 = 12,673 > S∗P2
= 9010.

3.3. The case of cost inclusion.We assume that both unit costs of harvesting
CXi and market prices pX are constant, but the costs may differ between patches
and the prices may differ between species. A relatively constant unit cost of
harvesting are known, for example, in the clupeoids fishery (Munro, 1992). Us-
ing these assumptions optimal escapements for both the prey and predator have
exactly the same form as escapements where costs are negligible, i.e.

S∗Nci
=

Aci Qci
2si
Li
+ Cci Bci

1ci
,
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S∗Pci
=

Bci Pci
2ri
Ki
+ Cci Aci

1ci
,

provided 1ci = C2
ci − Pci

2ri
Ki

Qci
2si
Li
6= 0 with

Aci = (pN − cNi )

ρ
− [pii (pN − cNi )+ pi j (pN − cNj )]ri − ai (pN − cNi ),

Bci = (pP − cPi )

ρ
− [qii (pP − cPi )+ qi j (pP − cPj )]si − bi (pP − cPi ),

Cci =−αi (pN − cNi )+ βi (pP − cPi ),

Pci = pii (pN − cNi )+ pi j (pN − cNj ),

Qci = qii (pP − cPi )+ qi j (pP − cPj ).

Similar results to the four results discussed in the negligible cost analysis can also
be obtained by inserting an additional subscript c into the appropriate parameters,
with additional conditions such as:

1. For Result 1, the prey subpopulation 1 is a relative source subpopulation
with p11r1 ≥ p21r2 and p12r1 > p22r2 (or p11r1 > p21r2 and p12r1 ≥ p22r2).

2. For Results 2 and 3, the marginal net revenue from the prey subpopulation 1
is lower than or equal to the marginal revenue from the prey subpopulation
2, that is pN − cN1 ≤ pN − cN2 , and its ratio satisfies

pN − cN1

pN − cN2

≥ r2 p22

r1 p11
.

4. CONCLUSION

Harvesting strategies for a spatially structured predator–prey system are estab-
lished as a generalization of harvesting strategies for a single-species metapopu-
lation. Some properties of the escapements for a single-species metapopulation
are preserved in the presence of predators, such as the strategies on how to har-
vest a relative source/sink and exporter/importer local population. In the absence
of harvesting costs, we find that if there are no biological parameter differences
between local populations, the rules of thumb for harvesting a single-species
metapopulation can be used to manage a predator–prey metapopulation provided
the predator efficiency is high. Furthermore, we find that, in some circumstances,
with harvesting costs and cost differences between patches, and price differences
between species, the rules are unaltered if all costs of harvesting are independent
of the size of the stocks.
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In addition, we establish rules to harvest relatively more (or less) vulnerable
prey subpopulations and more (or less) efficient predator subpopulations. In
general, if the migrations between subpopulations are symmetric, and there is
no biological variability except the vulnerability of the prey, then we should
harvest a relatively less vulnerable prey subpopulation more conservatively than
the other prey subpopulation which is more vulnerable to predation. A special
case occurs when there is no predation in patch 1, that is α1 = β1 = 0. In
this case, patch 1 is a refuge for the prey. We find that the prey living in their
refugial habitat should be harvested more conservatively than the prey living in
the habitat where predation occurs. Similarly, if the only biological variability
is the predator efficiency, then we should harvest the prey living in the same
patch with the relatively more efficient predator more conservatively than the
other prey subpopulation. Furthermore, if both prey vulnerability and predator
efficiency vary between patches, unlike predator efficiency, prey vulnerability
does not have any significant effect on the optimal escapements. In this case, we
harvest a relatively more efficient predator more conservatively than a relatively
less efficient predator. We also harvest the prey living in the same patch with
the relatively more efficient predator more conservatively.

It is important to realize the limitation of the model in this paper. It ignores
age-structure and only considers Lotka–Volterra predator–prey functional form.
Future models should include age structure and take into account various types
of predator–prey functional forms to make a more realistic model and generalize
results presented in this paper.
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APPENDIX

A.1. Proof of Result 1. Recall that B1 = B2 and C1 = C2, and hence we ignore
their subscripts. Let 1SN = (S∗N1

− S∗N2
)1112. Substitute escapement S∗Ni

from
equation (15) into expression S∗N1

− S∗N2
and rearrange the result to obtain

1SN =
(
−4s2

m

K L
(r2m− r1m)

)(
2R

L
− C

)
− 2C

L

(
C − 2S

K

)
sm(r1m− r2m)
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with R= 1
ρ
− a and S= 1

ρ
− b. Simplify the equation above to obtain

1SN = sm

[
2

L

(
C

(
C − 2B

K

)
− 4smR

K L

)]
(r2m− r1m).

Clearly S∗N1
> S∗N2

, since 2B
K ≤ C ≤ 0 and 1i < 0. We can prove S∗P1

≤ S∗P2
and

Result 4 similarly.

A.2. Proof of Result 2. All parameters are equal except p12r1 > p21r2. Recall
that

S∗N1
= (R− r1m)

2s1m
L + C B

C2 − 4r1ms1m
K L

and

S∗N1u
= (R− r1u)

2s1m
L + C B

C2 − 4r1us1m
K L

.

Following the proof of Result 1 we obtain

(S∗N1
− S∗N1u

)11u11 = (r1u − r1m)

(
C

(
C − 2B

K

)
− 4Rs1m

K L

)
2s1m

L
,

where 11u = C2 − 4r1us1m
K L , and 11 = C2 − 4r1ms1m

K L < 0. Since p11r1 ≥ p22r2 and
1i < 0, i = 1, 2, then 11u < 0. Furthermore since r1m > r1u and 0 > C > 2B

K ,
then we have S∗N1

− S∗N1u
> 0. In other words S∗N1

> S∗N1u
. Analogously we can

prove that S∗N2
< S∗N2u

, S∗P1
< S∗P1u

and S∗P2
> S∗P2u

.
Now we only need to show that S∗N1

+ S∗N2
≤ S∗N1u

+ S∗N2u
since S∗P1

+ S∗P2
≥

S∗P1u
+ S∗P2u

can be shown similarly. Recall that

(S∗N1
− S∗N1u

) = (r1u − r1m)X

11u11
,

and similarly

(S∗N2
− S∗N2u

) = (r2u − r2m)X

12u12
,

where

X =
(

C(C − 2B/K )− 4Rsim
K L

)
2sim

L
< 0,

with i is either 1 or 2. If 1SNu = (S∗N1
+ S∗N2

)− (S∗N1u
+ S∗N2u

) then

1SNu1111u1212u/X

= (r1u − r1m)
[
C4 − (r2m+ r2u)4simC2/(K L)+ r2mr2u16s2

im/(K
2L2)

]
+(r2u − r2m)

[
C4 − (r1m + r1u)4simC2/(K L)+ r1mr1u16s2

im/(K
2L2)

]
= (r1u − r1m + r2u − r2m)C

4 − 2(r1ur2u − r1mr2m)4simC2/(K L)

+(r1ur2u(r1m + r2m)− r1mr2m(r1u + r2u))16s2
im/(K

2L2)
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Since r1u+ r2u = r1m+ r2m, then the first term is zero, and the third term is equal
to (r1ur2u − r1mr2m)(r1m + r2m)16s2

im/(K
2L2). Hence we have

1SNu= (−8simC2/(K L)+ (r1m + r2m)16s2
im/(K

2L2))(r1ur2u − r1mr2m)

1111u1212u
X

= (8sim/(K L)( 2(r1m+r2m)sim

K L − C2))(r1ur2u − r1mr2m)

1111u1212u
X

Since 1i < 0 with i = 1, 2, then C2 − 2(r1m+r2m)sim

K L < 0. We can prove that if
p11r1 ≥ p22r2 then (r1ur2u − r1mr2m) ≥ 0. Hence 1SNu ≤ 0. This completes the
proof.

A.3. Proof of Result 3. Recall that

S∗Nw =
(Rw − rw)

2sw
Lw
+ CwBw

C2
w − 4Qwrw

KwLw

= (R− rw)
sw
L + C B

C2 − swrw
K L

.

Hence
1

2
S∗Nw =

(R− rw)
sm
L + C B

2C2 − 2smrw
K L

.

Using Result 2 we obtain

S∗N1
= (R− r1m)

2sm
L + C B

C2 − 4smr1m
K L

>
(R− rw)

2sm
L + C B

C2 − 4smrw
K L

= S0

since r1m > rw. Furthermore, since C is the root of ( 1
2 S∗Nw−S0)1w

2
10 = −3(R−

rw)
smC2

L − BC3 + Brw2smC
K L = 0 then S∗N1

≥ 1
2 S∗Nw . We can prove S∗N2

≤ 1
2 S∗Nw ,

S∗P1
≤ 1

2 S∗Pw and S∗P2
≥ 1

2 S∗Pw similarly. The proof of S∗N1
+ S∗N2

< S∗Nw and
S∗P1
+ S∗P2

> S∗Pw can be done by following the last part of the proof of Result 2.
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