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Introduction 
Despite recognized as an abstract science, mathematics has proved to be useful in helping to solve 
many problems arising in daily life and problems from other disciplines, such as industrial, 
environmental, and biological sciences. The inter-relations between mathematics and other disciplines 
have not only giving benefits to the disciplines served by mathematics, but in many cases, there are 
also fruitfulness to mathematics itself. There are some mathematical concepts and theories inspired 
from these inter-relations. Sometimes the intimate connection between mathematics and other 
discipline gives rise to a new discipline, such as in the case of mathematical epidemiology.  
 
Earlier works in mathematical epidemiology dated back to eighteenth century, when Bernoulli used a 
mathematical method to evaluate the effectiveness of the techniques of inoculation against smallpox, 
with the aim of influencing public health policy. He showed that, if the inoculation is universal, the 
techniques could increase the number of survivors per year or increase the average life expectancy. 
Further results in mathematical epidemiology can be seen in many literatures, in which most authors 
postulated that the course of an epidemic depends on the rate of contact between susceptible and 
infected individuals, termed as the mass action principle. Meanwhile, a medical doctor, Sir Ronald 
Ross in the early twentieth century identified the main factors in malaria transmission and calculated 
the number of new infection. His analysis ended up to a conclusion that no need to eradicate all of the 
mosquitoes to eradicate malaria, because there exists a critical density of mosquitoes, below which 
the disease will vanish, this is known as the mosquito theorem, or the theory of critical level of 
eradication. This result was formalized and generalized by Kermack and MacKendrick about a decade 
later. Similar finding were attributed to Macdonald in the middle of the twentieth century who 
introduced the concept of basic reproduction rate and defined in a more plausible manner by 
Diekmann and Heesterbeek (2000) as the expected number of secondary cases per primary case in a 
‘virgin’ population. 
 
In this paper we give an example of the applications of mathematics in understanding and controlling a 
newly emerging and novel disease, avian flu (AI), in Dusun Tipar (Tipar Village) within the district of 
Cikelet (Garut, West Java). This hilly village covers the area of approximately 70 ha with relatively 
sparse human and chicken populations of about 2,000 and 10,000, respectively. The study of AI 
transmission in Tipar Village is important due to the following reasons. The outbreak of AI in this 
village is the first endemic at such scale and an action to prevent a more devastating outbreak should 
be taken. There was transmission from chicken to human and the phenomenon is not fully understood. 
Similar case may happen in other places, since many villages in West java are typically similar to Tipar 
in many respects. The villagers usually keep some backyard chickens, in which the chickens free from 
custody during the day time for foraging and going back to their nest underneath the owner’s house in 
the evening. 
 
Chronologically, a rapid transmission of AI in Tipar is as the following. On April 2006, one person 
bought few chickens from central market for village festivity. Two or three of them died on the way to 
the village, and were discarded somewhere near the village border. In the next following days, few 
chickens died without reason. No one has reported this chronological incident in the newspapers. 
Nevertheless, it was reported that the outbreak occurred around the end of June 2006 and lasting for 
more than one month, with 11 human cases of Avian Influenza reported (five died and six suspected). 
Eradication and other necessary actions were done following the outbreak. 
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The outbreak of AI in Tipar village has heightened national concerns about the weakness of the country 
to prevent a pandemic. Among questions that need to be answered, in terms of understanding and 
controlling the disease, are as the following.  

• How to explain in simple scientific terms about the spread and the disappearance of AI? 
• Are there any easy indicators to identify possible endemics before infection starts to occur?  
• Is total eradication necessary? If not, what are the consequences? 
• With possible adaptation of virus in human body, what are the consequences? 
• How to find an affordable effective control strategy which is realistic to be implemented? 

To address these questions is rather difficult due to the lack of data. Even if the data is available, it is 
far from accurate. In many cases, measurement is impossible to be done and information is scattered 
and difficult to access. Presumably, this is simply because of a limited government budget in health 
sector. In this paper we propose an approach using mathematical model to address those issues.  
 
Results / Discussion  
We model AI transmission in a chicken (traditional) farms in which we assume that the farms are 
spread through out the region, with free contact among chickens within the farm. The village is divided 
into six separated sub-regions in which there is no direct contact between chicken from different sub-
region. The spread of infection from one sub-region to the others may come from indirect contact such 
as from air or from water. Recruitment rate is assumed to be constant. There are two types of death, 
i.e. natural death and death from AI virulence. The contact among individuals is random and 
harvesting is done and distributed proportionally both to susceptible chickens and (asymptomatically) 
infected chickens. The transmission mechanism in each sub-region is depicted in Figure 1. Differential 
equations for a simple case are devised to express this mechanism. The form is similar to the 
equations in Figure 5, but without human compartments. Analysis of the disease transmission was 
done by utilizing the concept of basic reproduction number. Simulation is then carried out by applying 
some known parameters to obtain some inferences and interpretations. 
 

 

 

 

 Figure 1  
 

  
Figure 2 Figure 3 

 
Figure 2 shows the dynamics of AI in chicken population. Initially there are 10,000 healthy chickens 
when an infectious chicken introduced into the farm. Within approximately 80 days the disease has 
successfully invaded all the farms and reached the peak. In this simulation we assume that there is no 
intervention to contain the AI. The figure shows that the disease does not fade away. This partially 
might be due to the relatively high recruitment of the healthy chickens and low harvest (A and B, 
respectively, in the R0 expression below). 
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Since infection in human is identified, we then include disease transmission to human. We assume 
that there is no separation between chicken population and human population. Transmission occurs 
from chickens to human and not the other way around. A high risk group of people has a “close 
contact” with chickens in daily basis, and transmission of AI from human to human occurs only within 
cluster. As an illustration, a schematic diagram of the transmission, if there is only one region 
considered, is given in Figure 4 with the corresponding mathematical equations in Figure 5. 
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Figure 4 Figure 5 
 
In this case, the basic reproduction number for the transmission of the disease is   

(2 1 / / 1o
cR
A Bμ μ

=
+ −

. The disease will endemic only if this number is greater than one. Figure 3 

shows the resulting graph of infected human from this model. It reveals that the dynamics of infected 
human population is behaving like the infected chicken population. Hence, endemic in chicken 
population implies endemic in human population. Moreover, it also implies that treatment is needed to 
stop the AI transmission. Iwami et al. (2007) show that if there is no action to stop the spreading of AI, 
there is a possibility that there will be a mutant of AI with increasing transmissibility (Fergusson et al., 
2005), spreading from human to human, which eventually may cause a pandemic. The effectiveness 
of some containment strategies have been investigated for the case of rural Southeast Asia regions 
(Longini et al. 2005) and Worldwide (Colliza et al., 2007). Poultry vaccination, culling, or combinations 
of both are among the strategies that have proven to be effective (Van der Goot et al., 2005; Webster 
and Hulse, 2005), which to some extent has been applied in the Tipar case. We believe that the rapid 
disappearance of the disease might be due to the presence of health authority intervention, in this 
case poultry eradication. 
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