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ABSTRACT 
Spectral regression method is one of the popular methods for estimating the difference parameter  of 

ARFIMA(p,d,q) model. Spectral density function of ARFIMA(p,d,q) model was formed to construct linear regression 
function for estimating the difference parameter d by Ordinary Least Square (OLS). This method has attracted many 
researchers because it could cope the difficulty in derivation of the autocovariance function of ARFIMA(p,d,q) 
model. The estimation of d by using regression method could be done directly without knowing p and q parameter. 
This method was proposed by Geweke and Porter-Hudak (1983) and modified by Reisen (1994) with smoothing 
periodogram by parzen window. Then, Robinson (1995) added l trimming on this periodogram. Hurvich and Ray 
(1995) and Velasco(1995a) used modified periodogram by cosine – bell tapered function,  Velasco (1999) changed 
independent variable of spectral regression  2sin(ωj/2) by j ( index of periodogram frequency). In this paper we will 
compare the estimation accuracy among five methods by using simulation study in two conditions, i.e clean data and 
data with outlier. 

 From simulation results, GPH method shows a good performance in estimating the differencing parameter 
of ARFIMA model both clean data and data with outlier. Above all, estimation of spectral regression methods are 
better for ARFIMA(1,d,0) data than for ARFIMA(0,d,1) data.   
Keywords : ARFIMA, Ordinary Least Square, Outliers, Periodogram  
 
1. Introduction 

Long range dependence or long memory means that observations far 
away each other are still strongly correlated. The correlation of a long-memory 
process decay slowly that is with a hyperbolic rate, not exponentially like for 
example  ARMA-process ( see figure.1). 

The literature on ARFIMA processes has rapidly increased since early 
contribution by Granger and Joyeux (1980), Hosking (1981) and Geweke and 
Porter-Hudak (1983). This theory has been widely used in different fields such 
as meteorology, astronomy, hydrology and economics. 

Geweke and Porter-Hudak (1983) presented a very important work on 
stationary long memory processes. Their paper gave rise to several other works, 
and presented a proof for the asymptotic distribution of the long memory 
parameter. These authors proposed an estimator of d as the ordinary least 
squares estimator of the slope parameter in a simple linear regression of the 
logarithm of the periodogram. Reisen (1994) proposed a modified form of the 
regression method, based on a smoothed version of the periodogram function. 
Robinson (1995a), making use of mild modifications on Geweke and Porter-
Hudak’s estimator, dealt simultaneously with  0.5, 0.0d   and   0.0, 0.5d  . 
Hurvich and Deo (1999), among others, addressed the problem of selecting the 
number of frequencies necessary for estimating the differencing parameter in the 
stationary case. Fox and Taqqu (1986) considered an approximated method, 
whereas Sowell (1992) presented the exact maximum likelihood procedure for 
estimating the fractional parameter. These two papers considered the estimation 



procedures for the stationary case. Simulation studies comparing estimates of d 
may be found, for instance, in Bisaglia and Guegan (1998), Reisen and Lopes 
(1999), Reisen et al. (2000,2001). 
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Figure 1. ACF plot of long memory processes 

Here, by simulation study, we compare accuracy of estimation the differencing 
parameter of ARFIMA model by the spectral regression methods. The first  estimator is 
proposed by Geweke and Porter-Hudak (1983), denoted in the following by GPH. The 
second estimator is the smoothed periodogram regression (SPR), suggested by Reisen 
(1994). 

As a third method we consider the GPH, based on the trimming l and bandwith m, 
denoted hereafter by GPHTr, suggested by Robinson (1995a). The GPHTr method 

regresses   jlog I ω  on   2
/ 2 ,jlog 2sin  for j = 2,3,…,m, where j and m are  index 

and bandwith of periodogram respectively. The fourth method is a modified form of the 
GPH method, denoted hereafter by MGPH, obtained by replacing in the regression 
equation the quantity  / 2j2sin   by j.  

The Cosine-bell tapered data method in the following by GPHTa, is the fifth 
approach considered here. In this method the modified periodogram function where the 
tapered data is obtained from the cosine-bell function, this estimator was also used in 
the works by Hurvich and Ray (1995) and Velasco (1999a). 

   
2. ARFIMA Model 

A well known class of long memory models is the autoregressive fractionally 
integrated moving average (ARFIMA) process introduced by Granger and Joyeux 
(1980) and Hosking (1981). 

An ARFIMA model (p,d,q) can be defined as follows: 
    tt

d aBZBB )(1)(              (1) 
Where 
t       = index of observation 
d      = the degree of differential parameter ( real number) 
    = mean of observation 

p
p BBBB   ...1)( 2

21 , polynomial of AR(i) 
2

1 2( ) 1 ... q
qB B B B        , polynomial of MA(q) 

 1 dB  = fractional differencing operator 

  at is IID(0, 2 ). 



3. Estimation of the Differencing Parameter 
There have been proposed in the literature many estimators for the fractional 

differencing parameter. We shall concentrate in estimators based upon the estimation of 
the spectral density function. The semi-parametric estimators describe bellow are 
obtained taking the logarithm of the spectral density. Estimation of d from ARFIMA 
(p,d,q) model as follows 
a) Construct spectral function of ARFIMA (p,d,q) model 

For the ARFIMA model given in equation (1), let  1 d
t tW B Z  , and let 

 Wf   and  Zf  be the spectral density function of  tW and  tZ , respectively. 
Then,  

       d2
WZ 2/sin2ff   , 0                                                                         (2) 
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is the spectral density of a regular ARMA (p,q) model. Note that  Zf    as 
0  . 

b) Take  logarithms on both sides of equation (2).  
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c) Add   ln Z jI  , the natural logarithm of periodogram  tZ  to Both side of 
equation (3) above, 
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     (4) 

d) Determine the periodogram from equation (4) 
Geweke and Porter-Hudak (1983) obtained periodogram by 
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This periodogram was also used by GPHTr and MGPH methods. 
Reisen (1994) used the smoothed periodogram estimate of spectral density 
function by 
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Where  t are a set of weights called the lag window. Various windows can 
be chosen to smooth the periodogram. The Parzen window is given by 
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and has the desirable property that it always produces positive estimates of 
the spectral density function. 
Hurvich and Ray (1995) and Velasco(1999a) used modified periodogram 
function by 
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Where the tapered data is obtained from the cosine-bell function 
 2 0,51( ) 1 cos

2
t

tap t
T

  
   

   
 

e) Estimate differencing parameter (d) 
From equation (4), for j  near zero, i.e., for j = 1,…,m<<(T/2) such that 

/ 0m T  as n  , we have     ln / 0 0W j Wf f  .Thus, 
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Where, 
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For computation, with Euler equation we have 
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4. Outlier in Time Series 

 Time series observations are sometimes inflenced by interruptive events, such as 
strikes, outbreaks of war, sudden political or economic crises, unexpected heat or cold 
waves, or event unnoticed error of  typing and recording. The sequences of these 
interruptive events create spurious observations that are iconsistent with the rest of 
series. Such observations are usually referred to as outliers. 
 In this paper we focus on AO (Additive Outlier). Additive outlier is an event that 
effects a series for one time period only. An additive outlier model is defined as  
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is indicator variable representing the presence or absence of an outlier at time T.  
 The likelihood ratio test for AO is, 1, A aˆ /  Τ Τ , if 1,

ˆ ˆ C  Τ Τ , where C is 

a predetermined positive constant usually taken to be some value between 3 and 4, then 
there is and AO at time T with its effect estimated by A̂ Τ . Where A̂ Τ  is the least 
square estimator of   for the AO model. 
 
5 Simulation Study 

We have conducted simulation studies to obtain some information about the 
performance of the accuracy of spectral regression methods in estimating the degree of 
differencing parameter from ARFIMA model. In this simulation study we use five 
methods of spectral regression methods namely, ˆ ˆ ˆ ˆ, , ,GPH SPR GPHTr GPHTad d d d  and ˆ

MGPHd . 
For this we consider T = 300 and 1000 time series with 1000 replications. In this study, 
time series data are generated according to the particular specification.  

a) Data of ARFIMA (1,d,0) and ARFIMA(0,d,1) models  
b) Data of ARFIMA (1,d,0) and ARFIMA(0,d,1) models with  five outliers. The 

location of the outlier is set in the middle of the observational period, 
specifically T = {148,149,150,151,152} when T = 300 and T ={498,499,500, 
501,502} for    T = 1000.  
Both data of ARFIMA models have specification as follow  0,1ta N� , 

, 0.5   , 0.2d  and 0.4.  
For each series we estimate the value of d through the different methods and 
later we take the arithmetic average of these values, that is  
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Where d̂  corresponds to ˆ ˆ ˆ ˆ, , ,GPH SPR GPHTr GPHTad d d d  and ˆ
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depending on the estimation method used. To compare the different estimator 
we considered the mean squared error value, denoted hereafter by MSE, i.e., 
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Where d is the true parameter value. 
 
 
 
 
 
 

 



6. Simulation Result 
 

Table.1 Mean And MSE of estimate from d ARFIMA Model 
GPH SPR GPHTr GPHTa MGPH MODEL Statistic d 

300 1000 300 1000 300 1000 300 1000 300 1000 
0.2 0.23 0.22 0.19 0.19 0.40 0.35 0.27 0.22 0.39 0.31 

Mean 
0.4 0.46 0.42 0.40 0.39 0.66 0.50 0.38 0.33 0.60 0.50 

0.2 0.19 0.13 0.15 0.11 0.13 0.07 0.20 0.17 0.09 0.06 

ARFIMA(1,
d,0)

 

MSE 
0.4 0.21 0.14 0.17 0.11 0.13 0.08 0.30 0.21 0.09 0.06 

0.2 0.16 0.19 0.11 0.16 0.04 0.10 0.10 0.07 0.01 0.10 
Mean 

0.4 0.37 0.40 0.31 0.66 0.27 0.33 0.13 0.10 0.21 0.30 

0.2 0.20 0.13 0.15 0.11 0.13 0.07 0.07 0.05 0.10 0.06 

ARFIMA(0,
d,1)

 

MSE 
0.4 0.20 0.13 0.16 0.11 0.13 0.08 0.09 0.07 0.10 0.06 

 
Table 2. Mean And MSE of estimate d from ARFIMA Model With Outlier 

GPH SPR GPHTr GPHTa MGPH MODEL Statistic d 
300 1000 300 1000 300 1000 300 1000 300 1000 

0.2 0.13 0.18 0.09 0.15 0.42 0.33 0.22 0.23 0.40 0.28 
Mean 

0.4 0.33 0.40 0.28 0.36 0.50 0.55 0.34 0.33 0.54 0.46 

0.2 0.19 0.14 0.14 0.11 0.12 0.07 0.17 0.20 0.09 0.06 

ARFIMA(1,
d,0)

 

MSE 
0.4 0.21 0.14 0.17 0.11 0.13 0.08 0.26 0.26 0.09 0.06 

0.2 0.05 0.02 0.02 0.02 0.36 0.16 0.07 0.07 0.40 0.16 
Mean 

0.4 0.05 0.19 0.03 0.19 0.36 0.22 0.08 0.10 0.41 0.23 

0.2 0.08 0.11 0.06 0.08 0.05 0.06 0.05 0.05 0.05 0.04 
ARFIMA(0,

d,1)
 

MSE 
0.4 0.14 0.13 0.11 0.10 0.09 0.07 0.07 0.07 0.07 0.05 

 
 From table 1 we can report that  accuracy of estimation with T = 1000 is better 
than T = 300 both  ARFIMA(1,d,0) and ARFIMA(0,d,1) data. The best methods may be 
GPH and SPR methods, because  estimate d from these methods are the nearest from 
true value d.   
 The same as table 1, from table 2 we can report that  accuracy of estimation with 
T = 1000 is better than T = 300 both  ARFIMA(1,d,0) and ARFIMA(0,d,1) data. The 
best methods may be GPH and GPHTa methods, because  estimate d from these 
methods are the nearest from true value d.  If we compare the result of estimation from 
ARFIMA(1,d,0) and ARFIMA(0,d,1) models then estimation from ARFIMA(1,d,0) 
data is better than  ARFIMA(0,d,1) data. 
 From figure 2 , GPH and SPR methods show a good performance in estimating 
the differencing parameter especially from ARFIMA(1,d,0) model. The centre of these 
Boxplots next to reference line as true value. GPHTa has a good accuracy but still wide 
of range.  
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(i) ARFIMA(1,d,0), d = 0.2 
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(ii) ARFIMA(1,d,0), d = 0.4 
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(iii) ARFIMA(0,d,1), d=0,2 
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(iv) ARFIMA(0,d,1),  d = 0.4 

Figure 2. Box plot of estimate d from ARFIMA Model Data With T = 300. 
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(i) ARFIMA(1,d,0), d = 0.2 
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(ii) ARFIMA(1,d,0), d = 0.4 
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(iii)  ARFIMA(0,d,1), d=0,2 
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(iv) ARFIMA(0,d,1),  d = 0.4 
Figure 3. Box plot of estimate d from ARFIMA Model Data With T = 1000. 
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(i) ARFIMA(1,d,0), d = 0.2 
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(ii) ARFIMA(1,d,0), d = 0.4 
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(iii) ARFIMA(0,d,1), d = 0.2 
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(iv) ARFIMA(0,d,1), d = 0.4 
Figure 4. Box plot of estimate d from ARFIMA Model Data With Outlier ( T = 305 ) 
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(i) ARFIMA(1,d,0), d = 0.2 
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(ii) ARFIMA(1,d,0), d = 0.4 
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(iii) ARFIMA(0,d,1), d = 0.2 
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(iv) ARFIMA(0,d,1), d = 0.4 
Figure 5. Box plot of estimate d from ARFIMA Model Data With Outlier ( T = 1005 ) 

 
 From Figure 3, all of methods have under estimate in estimating  the 
differencing parameter for ARFIMA(1,d,0) models with d = 0,4. For ARFIMA(1,d,0) 



model with d = 0,2 GPH and SPR show a good accuracy in estimating the differencing 
parameter, their centre of boxplot near reference line d = 0,2. For ARFIMA(0,d,1) 
model with d=0,2, only GPH method has a good accuracy with the centre of boxplot 
exactly at reference line and another methods have higher estimate. For ARFIMA(0,d,1) 
model with d = 0,4, all methods fail to identify value of the differencing parameter, no 
boxplot has centre at reference line. 
 Figure 4, we can report that GPHTa show a good performance in estimating the 
differencing parameter for all models, especially for ARFIMA(1,d,0) model with d = 
0,2. The second method is GPH, this method has enough consistent in estimating the 
differencing parameter. GPHTr and MGPH methods have a bad estimate for all models. 
 Figure 5, GPH method has a good performance in estimating the differencing 
parameter for ARFIMA model with d=0,2, the centre of boxplot has near the reference 
line. All methods have under estimste in estimating the differencing parameter for 
ARFIMA(1,d,0) model with d=0,4. For ARFIMA(0,d,1) model with d = 0,4 and have 
five outliers all of methods fail to identify value of the differencing parameter for 
ARFIMA(0,d,1) model with d = 0,4 and five outliers. 
 
7. Conclusion 
 From simulation results, GPH method shows a good performance in estimating the differencing 
parameter of ARFIMA model both clean data and data with outlier. Above all, estimation of spectral 
regression methods are better from ARFIMA(1,d,0) data than from ARFIMA(0,d,1) data.   
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