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ABSTRACT 
This paper compares the accuracy of estimation of differencing parameter from nonstationary ARFIMA 

Data. For comparison purposes, the GPH (Geweke and Porter-Hudak) method is modified by  three tapers, there are 
Cosine bell, Hanning and Hamming tapers.Accuracy among three methods are justified by Mean Square Error and 
Deviation Standard in two models, i.e ARFIMA(1,d,0) and ARFIMA(0,d,1). From simulation results, GPH method 
with Cosine Bell tapering shows a good performance in estimating the differencing parameter of ARFIMA(0,d,1)  
data.  From ARFIMA(1,d,0) data, GPH method with Hanning tapering is the best of all methods 
Keywords : ARFIMA , Periodogram,Taper 
 
1.   INTRODUCTION 
 

Long range dependence or long memory means that observations far away each 
other are still strongly correlated. The correlation of a long-memory process decay 
slowly that is with a hyperbolic rate, not exponentially like for example  ARMA-process 
( see figure.1) 

The literature on ARFIMA processes has rapidly increased since early 
contribution by Granger and Joyeux (1980), Hosking (1981) and Geweke and Porter-
Hudak (1983). This theory has been widely used in different fields such as meteorology, 
astronomy, hydrology and economics. 

Geweke and Porter-Hudak (1983) presented a very important work on stationary 
long memory processes. Their paper gave rise to several other works, and presented a 
proof for the asymptotic distribution of the long memory parameter. These authors 
proposed an estimator of d as the ordinary least squares estimator of the slope parameter 
in a simple linear regression of the logarithm of the periodogram. Reisen (1994) 
proposed a modified form of the regression method, based on a smoothed version of the 
periodogram function. Robinson (1995) has made a  mild modifications on Geweke and 
Porter-Hudak’s estimator, dealt simultaneously with  0.5, 0.0d   and   0.0, 0.5d  . 
Hurvich and Deo (1999), among others, addressed the problem of selecting the number 
of frequencies necessary for estimating the differencing parameter in the stationary case. 
Fox and Taqqu (1986) considered an approximation method, whereas Sowell (1992) 
presented the exact maximum likelihood procedure for estimating the fractional 
parameter. These two papers considered the estimation procedures for the stationary 
case. Simulation studies comparing estimates of d may be found, for instance, in 
Bisaglia and Guegan (1998), Reisen and Lopes (1999). 

Here, by simulation study, we compare accuracy of estimation the differencing 
parameter of nonstationary ARFIMA model by the spectral regression methods with 
cosine tapered periodogram. The first  estimator is  the modified periodogram function 
where the tapered data is obtained from the cosine-bell function, this estimator was  
used in the works by Hurvich and Ray (1995) and Velasco (1999a).  As the second and 
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the third estimator, we consider Hanning and Hamming tapers respectively for 
estimating the differencing parameter of ARFIMA model. Autoregressive and Moving 
average parameters are estimated by maximum likelihood. 
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                     Figure 1. ACF plot of long memory processe 

 
2. ARFIMA MODEL  

A well known class of long memory models is the autoregressive fractionally 
integrated moving average (ARFIMA) process introduced by Granger and Joyeux 
(1980) and Hosking (1981). 

An ARFIMA model (p,d,q) can be defined as follows: 

   ( ) 1 ( )
d

B B Z B at t                                       (1) 
where  
t       = index of observation ( t = 1,2,…,T) 
d      = the degree of differential parameter ( real number) 
   = mean of observation 

      2( ) 1 ...1 2
pB B B Bp        , polynomial of AR(p) 

      2( ) 1 ...1 2
qB B B Bq        , polynomial of MA(q) 

 1
d

B  = fractional differencing operator 
 at is IID(0, 2 ). 
 

3.   GPH METHOD 
There have been proposed in the literature many estimators for the fractional 

differencing parameter. We shall concentrate in estimators based upon the estimation of 
the spectral density function. The semi-parametric estimators describe bellow are 
obtained taking the logarithm of the spectral density. Estimation of d from ARFIMA 
(p,d,q) model as follows 
a) Construct spectral function of ARFIMA (p,d,q) model 

For the ARFIMA model given in equation (1), let  1
d

W B Zt t  , and let  Wf   

and  Zf  be the spectral density function of  Wt and  Zt , respectively. Then,  

       2
2 sin / 2

d
f fZ W  


 , 0                                                                          (2) 

Where 
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   
 

2
2

2
W

exp( i )q jaf j
exp( i )j

,
 


  





 

is the spectral density of a regular ARMA (p,q) model. Note that  Zf    as 0  . 
b) Take  logarithms on both sides of equation (2).  

    1
2

ln f d ln exp( i ) ln fj j jZ W  


    

     
 

0 1
0

f jW
ln f d ln exp( i ) lnjW fW


   

 
  
 

-2
                   (3) 

c) Add   ln I jZ  , the natural logarithm of periodogram  Zt  to Both sides of 

equation (3) above, 

         
 

 
 

2
0 1

0

f Ij jW Z
ln I ln f d ln exp i ln lnjjZ W f fW jZ

 
 


     

      
   
      

         (4) 

d) Determine the periodogram from equation (4) 
Geweke and Porter-Hudak (1983) obtained periodogram by 

     11
20 12

T
I cos( t. ) , ,tj j jZ t

      



   


.                               (5) 

Hurvich and Ray (1995) and Velasco(1999a) used modified periodogram 
function by 

 
  

   11
1 02
0

2T
I tap t Z exp i t ,tj jZ T 2 ttap t

t

 



  



                  (6) 

where the tapered data is obtained from the cosine-bell function 
 2 0.51

( ) 1 cos
2

t
tap t

T

 
 

  
  

  
. For Comparison, we use another tapers, there are Hanning 

taper  2 11
( ) 1 cos

2 1

t
tap t

T

 
 



  
  

  
and Hamming taper 2

( ) 0.54 0.46 cos
1

t
tap t

T


 



 
 
 

. 

 
e) Estimate the differencing parameter (d) 

From equation (4), for j  near zero, i.e., for j = 1,…,m<<(T/2) such that 

/ 0m T  as T   , we have     / 0 0ln f fjW W  .Thus, 

1 20 1Y X a , j , , ...,mj j j      
ˆˆ

1 d   could be estimated by Ordinary Least Square (OLS). For computation, with 

Euler equation we have    
1

24 2
Y ln I , X ln .j jj Z sin /j




 
 
 
 
 

 

 After determining the value of d, we estimate Autoregressive (AR) and moving 
average (MA) parameters. Autoregressive ( ) and Moving average (θ) parameters are 
estimated by maximum likelihood method (Sowell, 1992).   
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4.  SIMULATION STUDY 
 

We have conducted simulation studies to obtain some information about the 
performance of the accuracy of spectral regression methods in estimating the degree of 
differencing parameter from ARFIMA model. In this simulation study we use three 
estimatirs five methods of spectral regression methods namely Cosine Bell, Hanning 
and Hamming tapers. The simulation is done for considering T = 300, 600 and 1000 
serial data with   1000 replications. In this study, time series data are generated 
according to the particular specification. Generate ARFIMA (1,d,0) and 
ARFIMA(0,d,1) models for simulated  data, with  T = 600 and   T = 1000, restpectively. 
Both types of data above have specification as follow  0,1ta N� ,  ,  = 0.5,            
d = 0.6 ,0.7and 0.8. 

For each series, we estimate the value of d through the three methods above and 
later we take the arithmetic average and standard deviation (SD) of these values. 
 After estimating ARFIMA parameters, we calculate Mean square error of 
forecasting with the value of out sample h =10.  MSE of forecasting could be seen at 
table 2. 
 

Table 1 Mean  and  Standard deviation of parameter estimation  d from  ARFIMA  
model data. 

  
GPH Estimation Method With Cosine Taper 

T   ARFIMA Model Data Cosine Bell 
    d         sd(d) 

Hanning 
   d         sd(d) 

Hamming 
 d         sd(d) 

d=0,6 0,624 0,195 0,620 0,200 0,617 0,195 

d=0,7 0,717 0,196 0,731 0,208 0,728 0,192 ARFIMA(1,d,0) 

d=0,8 0,840 0,198 0,833 0,193 0,830 0,189 

d=0,6 0,581 0,201 0,570 0,205 0,585 0,192 

d=0,7 0,687 0,198 0,685 0,204 0,696 0,187 

600 

ARFIMA(0,d,1) 

d=0,8 0,791 0,203 0,790 0,201 0,787 0,191 

d=0,6 0,611 0,172 0.602 0,173 0,6111 0,168 

d=0,7 0,712 0,178 0,705 0,170 0,716 0,197 ARFIMA(1,d,0) 

d=0,8 0,803 0,179 0,815 0,172 0,834 0,202 

d=0,6 0,598 0,175 0,583 0,174 0,592 0,162 

d=0,7 0,695 0,172 0,677 0,176 0,687 0,187 

1000 

ARFIMA(0,d,1) 

d=0,8 0,803 0,167 0,794 0,176 0,783 0,199 
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Table 2 MSE of  Forecasting ( h = 10) 
 

Cosine Taper  
T   ARFIMA Model Data Cosine Bell 

              
Hanning 

             
Hamming 

              

d=0,6 1.316 1.317 1.311 

d=0,7 1.322 1.322 1.316 ARFIMA(1,d,0) 

d=0,8 1.342 1.342 1.336 

d=0,6 1.254 1.254 1.251 

d=0,7 1.254 1.255 1.251 

300 

ARFIMA(0,d,1) 

d=0,8 1.232 1.233 1.229 

d=0,6 1.367 1.367 1.360 

d=0,7 1.323 1.323 1.317 ARFIMA(1,d,0) 

d=0,8 1.352 1.352 1.346 

d=0,6 1.262 1.262 1.258 

d=0,7 1.219 1.219 1.215 

600 

ARFIMA(0,d,1) 

d=0,8 1.633 1.633 1.622 

 
 

5. CONCLUSION  

From simulation results, GPH method with Cosine Bell tapering shows a good 
performance in estimating the differencing parameter of ARFIMA(0,d,1)  data.  From 
ARFIMA(1,d,0) data, GPH method with Hanning tapering is the best of all methods. 
From forecasting result, Mean square error of GPH method with Hamming tapering has 
the least value of all data types. 
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