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Abstract

We consider a mathematical programming model with probabilistic con-
straints and we solve it by transforming this problem into a multiple objective
linear programming problem. Also we obtain some results by using the approach
of crisp weighted possibilistic mean value of fuzzy number.
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1. INTRODUCTION

Predictions about investor portfolio holdings can provide powerful tests of
asset pricing theories. In the context of Markowitz portfolio selection problem,
this paper develops a possibilistic mean VaR model with multi assets. Further-
more, through the introduction of a set of investor-speci�c characteristics, the
methodology accommodates either homogeneous or heterogeneous anticipated
rates of return models. Thus we consider a mathematical programming model
with probabilistic constraint and we it solve by transforming this problem into
a multiple objective linear programming problem. Also we obtain our results
by using the approach of crisp weighted possibilistic mean value risk and possi-
bilistic mean variance of fuzzy number.
The rest of the paper is organized in the following manner. Section 2, pro-

pose a formulation of mean VaR the portfolio selection model with multi assets
problem. Section 3, consider an overview of the possibility theory and propose a
possibilistic mean VaR portfolio selection model. Also some results relatively to
e¢ cient portfolios are stated. In section 4, are obtained some results for e¢ cient
portfolios in the frame of the weighted possibilistic mean value approach. Thus
are extended some recently results in this �eld [4, 6, 7].
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2. MEAN VaR PORTFOLIO SELECTION MULTIOBJECTIVE
MODEL WITH TRANSACTION COSTS

We begin by using the rates of return of the risky securities in the economic
when we have a multivariate normal distribution. In practice, the computing
of a portfolio�s VaR this is a popular assumption when ( see Hull and White

[11]).
2.1 MEAN DOWNSIDE-RISK FRAMEWORK

In this section we extended [7, 8, 12] for i assets. In practice investors are
concerned about the risk that their portfolio value falls below a certain level.
That is the reason why di¤erent measures of downside-risk are considered in the
multi asset allocation problems. Denoted the random bariable �i; i = 1; q the
future portfolio value, i.e., the value of the portfolio by the end of the planning
period, then the probability
P (�i < (V aR)i), i = 1; q;
that �i the portfolio value falls below the (V aR)i level, is called the shortfall

probability. The conditional mean value of the portfolio given that the portfolio
value has fallen below (V aR)i , called the expected shortfall, is de�ned as
E(�i j�i < (V aR)i):
Other risk measures used in practice are the mean absolute deviation
E f(j�i � E(�i)j) j�i < E(�i)g ;
and the semi-variance
E((�i � E(�i))2 j�i < E(�i))
where we consider only the negative deviations from the mean.
Let xj(j = 1; n) represents the proportion of the total amount of money

devoted to security j and M1j and M2j represent the minimum and maximum
proportion of the total amount of money devoted to security j, respectively. For
j = 1; n; i = 1; q; let rji be a random variable which is the rate of the i return

of security j. Then �i =
nP
j=1

rjixj :

Assume that an investor wants to allocate his/her wealth among n risky secu-
rities. If the risk pro�le of the investor is determined in terms of (V aR)i; i = 1; q,
a mean-V aR e¢ cient portfolio will be a solution of the following multiobjective
optimization problem
(2.1) Max [E(�1); :::; E(�k)]
(2.2) subject to Prf�i � (V aR)ig � �i; i = 1; :::; k;
(2.3)

nP
j=1

xj = 1

(2.4) M1j � xj �M2j ; j = i = 1; n.
In this model, the investor is trying to maximize the future value of his/her

portfolio, which requires the probability that the future value of his portfolio
falls below (V aR)i not to be greater than �i; i = 1; q.

2.2. THE PROPORTIONAL TRANSACTION COST MODEL

The introduction of transaction costs adds considerable complexity to the op-
timal portfolio selection problem. The problem is simpli�ed if one assumes that

2



the transaction costs are proportional to the amount of the risky asset traded,
and there are no transaction costs on trades in the riskless asset. Transaction
cost is one of the main sources of concern to managers [1, 17.
Assume the rate of transaction cost of security j(j = 1; n) and allocation of

i(i = 1; q) asset is cji:Thus the transaction cost of security j and allocation of i

assets is cjixj . The transaction cost of portfolio x = (x1; :::; xq) is
nP
j=1

cjixj ; i =

1; q. Considering the proportional transaction cost and the shortfall probability
constraint, we purpose the following mean V aR portfolio selection model with
transaction costs:

(2.5) Max

"
E(�1)�

nP
j=1

cj1xj � :::� E(�k)�
nP
j=1

cjkxj

#
(2.6) subject to Prf�i � (V aR)ig � �i; i = 1; q;
(2.7)

nP
j=1

xj = 1;

(2.8) M1j � xj �M2j ; j = 1; n.

3. POSSIBILISTIC MEAN V aR PORTFOLIO SELECTION
MODEL

3.1 POSSIBILISTIC THEORY

We consider the possibilistic theory proposed by Zadeh [17]. Let ea and eb
be two fuzzy numbers with membership functions �ea and �eb respectively. The
possibility operator (Pos) is de�ned as follows [5].

(3.1)

8><>:
Pos(ea � eb) = supfmin(�ea(x); �eb(y)) jx; y 2 R; x � y g
Pos(ea < eb) = supfmin(�ea(x); �eb(y)) jx; y 2 R; x < y g
Pos(ea = eb) = supfmin(�ea(x); �eb(x)) jx 2 Rg

In particular, when eb is a fuzzy number b, we have
(3.2)

8<: Pos(ea � b) = supf�ea(x) jx 2 R; x � bg
Pos(ea < b) = supf�ea(x) jx 2 R; x < bg
Pos(ea = b) = �ea(b):

Let f : R�R! R be a binary operation over real numbers. Then it can be
extended to the operation over the set of fuzzy numbers. If we denoted for the
fuzzy numbers ea;eb the numbers ec = f(ea;eb), then the membership function �ec is
obtained from the membership function �ea and �eb by
(3.3) �ec(z) = supfmin(�ea(x); �eb(y)) jx; y 2 R; z = f(x; y)g
for z 2 R. That is, the possibility that the fuzzy number ec = f(ea;eb) achives

value z 2 R is as great as the most possibility combination of real numbers x; y
such that z = f(x; y), where the value of ea and eb are x and y respectively.

3.2 TRIANGULAR AND TRAPEZOIDAL FUZZY NUMBERS

Let the rate of return on security given by a trapezoidal fuzzy number er =
(r1; r2; r3; r4) where r1 < r2 � r3 < r4, and the membership function of the
fuzzy number er can be denoted by:
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Figura 3.1: Two Trapezoidal Fuzzy Number er and eb.
(3.4) �er(x) =

8>><>>:
x�r1
r2�r1 ; r1 � x � r2
1 ; r2 � x � r3
x�r4
r3�r4 ; r3 � x � r4
0 ; otherwise:

We mention that trapezoidal fuzzy number is triangular fuzzy number if
r2 = r3.
Let us consider two trapezoidal fuzzy numbers er = (r1; r2; r3; r4) and eb =

(b1; b2; b3; b4), as shown in Figure 3.1.
If r2 � b3, then we have
Pos(er � eb) = supfmin(�er(x); �eb(y)) jx � yg

� minf(�er(r2); �eb(b3)g = minf1; 1g = 1;
which implies that Pos(er � eb) = 1: If r2 � b3 and r1 � b4 then the supremum

is achieved at point of intersection �x of the two membership function �er(x) and
�eb(x). A simple computation shows that

Posfer � ebg = � = b4�r1
(b4�b3)+(r2�r1)

and
�x = r1 + (r2 � r1)�

If r1 > b4, then for any x < y, at least one of the equalities
�er(x) = 0; �eb(y) = 0

hold. Thus we have Posfer � ebg = 0. Now we summarize the above results
as

(3.5) Posfer � ebg =
8<: 1 ; r2 � b3
� ; r2 � b3; r1 � b4
0 ; r1 � b4:

Especially, when eb is the crisp number 0, then we have
4



(3.6) Posfer � 0g =
8<: 1 ; r2 � 0
� ; r1 � 0 � r2
0 ; r1 � 0

where
(3.7) � = r1

r1�r2 :
We now turn our attention the following lemma.
LEMMA 3.1 [5] Let er = (r1; r2; r3; r4) be trapezoidal fuzzy number. Then

for any given con�dence level � with 0 � � � 1; Pos(er � 0) � � if and only if
(1� �)r1 + �r2 � 0.
The � level set of a fuzzy number er = (r1; r2; r3; r4) is a crisp subset of R

and denoted by [er]� = fx j�(x) � �; x 2 Rg , then according to Carlsson et al [4]
we have

[er]� = fx j�(x) � �; x 2 Rg = [r1 + �(r2 � r1); r4 � �(r4 � r3)] .
Given [er]� = fa1(�); a2(�)], the crisp possibilistic mean value of er = (r1; r2; r3; r4)

is eE(er) = 1R
�(a1(�) + a2(�)

0

d�.

where eE denotes fuzzy mean operator.
We can see that if er = (r1; r2; r3; r4) is a trapezoidal fuzzy number then
(3.8) eE(er) = 1R

0

�(r1+�(r2�r1)+r4��(r4�r3))d� = r2+r3
3 + r1+r4

6

3.3. EFFICIENT PORTFOLIOS

Let xj the proportional of the total amount of money devoted to security j
, M1j and M2j represent the minimum and maximum proportion respectively
of the total amount of money devoted to security j . The trapezoidal fuzzy
number of rji is erji = (r(ji)1; r(ji)2; r(ji)3; r(ji)4) where r(ji)1 < r(ji)2 � r(ji)3 <
r(ji)4. In addition, we denote the (V aR)i level by the fuzzy number trapezoidaleb = (b1i; bi2; bi3; bi4); i = 1; :::; k:
Using this approach we see that the model given by (2.5)-(2.8) E(�i) reduces

to the form from the following theorem..

THEOREM 3.1 The possibilistic mean V aR portfolio model for the vector
mean V aR e¢ cient portfolio model (2.5)-(2.8) is

(3.9) max

� eE � nP
i=1

erj1xj�� nP
i=1

cj1xj � :::� eE � nP
i=1

erjkxj�� nP
i=1

cjkxj

(3.10) s.t Pos
�

nP
i=1

erjkxj < ebi� � �i; i = 1; q,
(3.11)

nP
i=1

xj = 1;

(3.12) M1j � xj �M2j ; jj= 1; n:
In the following for obtain the e¢ cient portfolios given by Theorem 3.1 we

use White [15].
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THEOREM 3.2 If �i > 0; i = 1; :::; k; then an e¢ cient portfolio for possi-
bilistic model is an optimal solution of the following problem :

(3.13) max
nP
i=1

�i

� eE � nP
i=1

erjixj�� nP
i=1

cjixj

�
(3.14) s.t Pos

�
nP
i=1

erjkxj < ebi� � �i; i = 1; q,
(3.15)

nP
i=1

xj = 1;

(3.16) M1j � xj �M2j ; j = 1; n:
Using the fact that rate of return on security j(j = 1; n) by trapezoidal fuzzy

number, from which the required result follows.
THEOREM 3.3. Let rate of return on security j(j = 1; n) by the trape-

zoidal erji = (r(ji)1; r(ji)2; r(ji)3; r(ji)4) where r(ji)1 < r(ji)2 � r(ji)3 < r(ji)4.

In addition eb = (b1i; bi2; bi3; bi4) is trapezoidal fuzzy number for V aR level and
� > 0, with i = 1; q:Then using the possibilistic mean V aR portfolio selection
model on e¢ cient portfolio is an optimal solution for the following problem :

(3.17) max
nP
i=1

�i

24 nP
i=1

r(ji)2xj+
nP
i=1

r(ji)3xj+

3 +

nP
i=1

r(ji)1xj+
nP
i=1

r(ji)4xj

6 �
nP
i=1

cjixj

35
(3.18) s.t (1� �i)

�
nP
i=1

r(ji)1xj � bi4
�
+ �i

 
nP
j=1

r(ji)2xj � bi3

!
� 0; i =

1; q,

(3.19)
nP
i=1

xj = 1;

(3.20) M1j � xj �M2j ; j = 1; n.
Proof : Really, from the equation (3.8), we have

eE � nP
i=1

erjixj� =
24 nP

i=1
r(ji)2xj+

nP
i=1

r(ji)3xj

3 +

nP
i=1

r(ji)1xj+
nP
i=1

r(ji)4xj+

6 �
nP
i=1

cjixj

35,
.
From Lemma 3.1, we have that

Pos

�
nP
i=1

erjkxj < ebi� � �i; i = 1; q, is equivalent with
(1� �i)

 
nP
j=1

r(ji)1xj � bi4

!
+ �i

 
nP
j=1

r(ji)2xj � bi3

!
� 0.

Furthermore, from (3.17)-(3.20) given by Theorem 3.2, we get is the following
form :

(3.21) max
x2Rn

kP
i=1

�i

24 nP
j=1

r(ji)2xj+
nP
j=1

r(ji)3xj

3 +

nP
j=1

r(ji)1xj+
nP
j=1

r(ji)4xj

6 �
nP
j=1

cjixj

35
(3.22) s.t. (1� �i)

 
nP
j=1

r(ji)1xj � bi4

!
+�i

 
nP
j=1

r(ji)2xj � bi3

!
� 0,i =

1; q;
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(3.23)
nP
i=1

xj = 1;

(3.24) M1j � xj �M2j ; j = i = 1; n.
This completes the proof.
Problem (3.21)-(3.24) is a standard multi-objective linear programming prob-

lem. For optimal solution we can used several algorithm of multi-objective pro-
gramming [12, 14].

4. WEIGHTED POSSIBILISTIC MEAN VALUE APPROACH

In this section introducing a weighting function measuring the importance
of �-level sets of fuzzy numbers we consider de�ne the weighted lower possibilis-
tic and upper possibilistic mean values, crisp possibilistic mean value of fuzzy
numbers, which is consistent with the extension principle and with the well-
known de�nitions of expectation in probability theory. We shall also show that
the weighted interval-valued possibilistic mean is always a subset (moreover a
proper subset excluding some special cases) of the interval-valued probabilistic
mean for any weighting function.
A trapezoidal fuzzy number er = (r1; r2; r3; r4) is a fuzzy set of the real line

R with a normal, fuzzy convex and continuous membership function of bounded
support. The family of fuzzy numbers will be denoted by F . A �-level set of
a fuzzy number er = (r1; r2; r3; r4) is de�ned by [er]� = fx j�(x) � �; x 2 Rg,
then
[er]� = fx j�(x) � �; x 2 Rg = [r1 + �(r2 � r1); r4 � �(r1 � r4)],
if � > 0 and [er]� = clfx 2 R j�(x) � 0 g (the closure of the support of er) if

� = 0. It is well-known that if er is a fuzzy number then [er]� is a compact
subset of R for all �[0; 1].
DEFINITION 4.1 [6] Let er 2 F be fuzzy number with [er]� = [a1(�); a2(�)]; � 2

[0; 1]. A function w : [0; 1] ! R is said to be a weighting function if w is non-
negative, monoton increasing and satis�es the following normalization condition

(4.1)
1R
0

w(�)d� = 1.

The w-weighted possibilistic mean (or expected) value of fuzzy number er is

(4.2) eEw(er) = 1R
0

a1(�)+a2(�)
3 w(�)d�.

It should be noted that if theneEw(er) = 1R
0

[a1(�) + a2(�)]�d�:

That is the w-weighted possibilistic mean value de�ned by (4.2) can be con-
sidered as a generalization of possibilistic mean value in [6]. From the de�nition
of a weighting function it can be seen that w(�) might be zero for certain (unim-
portant) �-level sets of er. So by introducing di¤erent weighting functions we
can give di¤erent (case-dependent) important to �-levels sets of fuzzy numbers.
Let er = (r1; r2; �; �) be a fuzzy number of trapezoidal form and with peak

[r1; r2], left-width � > 0 and right-width � > 0 and let
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w(�) = (2q � 1)[(1� �)�1=2q � 1],
where q > 1. It�s clear that w is weighting function with w(0) = 0 and

lim
q!1�0

w(�) =1.
Then the w-weighted lower and upper possibilistic mean values of er are

computed byeE�w (er) = 1R
0

[r1 � (1� �)�]2q[(1� �)�1=2q � 1]d�

= r1 � q�
4q�1 :

and eE+w (er)(er) = 1R
0

[r2 + (1� �)�]2q[(1� �)�1=2q � 1]d�

= r2 +
q�
4q�1

and thereforeeEw(er) = [r1 � q�
4q�1 ; r2 +

q�
4q�1 ]

(4.3) eEw(er) = r1+r2
2 + q(���)

2(4q�1) :

This observation along with Theorem 3.1 as section 3.3 leads to the following
theorem.
THEOREM 4.1 The mean V aR e¢ cient portfolio model is

(4.4) max
x2Rn

kP
i=1

�i

" eEw nP
j=1

erjixj!� kP
i=1

cjixj

#

(4.5) s.t. Pos

 
nP
j=1

erjixj < ebi! � �i; i = 1; :::; k,
(4.6)

nP
i=1

xj = 1;

(4.7) M1j � xj �M2j ; j = 1; :::; n.
In the next theorem we extend Theorem 3.3 to the case weighted possibility

mean value approach w(�).
THEOREM 4.2. Let w(�) = 2q[(1 � �)�

1
2q � 1]; q > 1 is weighted pos-

sibility mean of fuzzy number erji and let rate of return on security j(j =
1; :::; n) by the trapezoidal number erji = (r(ji)1; r(ji)2; r(ji)3; r(ji)4) where r(ji)1 <
r(ji)2 � r(ji)3 < r(ji)4 and addition eb = (b1i; bi2; bi3; bi4) is trapezoidal number
for (V aR)i; i = 1; :::; k . Then the possibilistic mean V aR portfolio selection
model is

(4.8) max
x2Rn

kP
i=1

�i

264
nP
j=1

r(ji)1xj+
nP
j=1

r(ji)2xj

2 +
q

 
nP
j=1

r(ji)1xj�
nP
j=1

r(ji)4xj

!
2(4q�1) �

nP
j=1

cjixj

375
(4.9) s.t. (1� �i)

 
nP
j=1

r(ji)1xj � bi4

!
+ �i

 
nP
j=1

r(ji)2xj � bi3

!
� 0,i =

1; q,

(4.10)
nP
j=1

xj = 1;

(4.11) M1j � xj �M2j ; j = 1; n:
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Proof : Really, from the equation (4.2), we have

eE nP
j=1

erjixj! =
nP
j=1

r(ji)1xj+
nP
j=1

r(ji)2xj+

2 +
q

 
nP
j=1

r(ji)1xj�
nP
j=1

r(ji)4xj

!
2(4q�1) ; i = 1; q:

From Lemma 3.1, we have that

Pos

�
nP
i=1

erjkxj < ebi� � �i; i = 1; :::; k, is equivalent with
(1� �i)

 
nP
j=1

r(ji)1xj � bi4

!
+ �i

 
nP
j=1

r(ji)2xj � bi3

!
� 0.

.
Furthermore, from (4.8)-(4.11) given by Theorem 4.1, is the following form :

(4.12) max
x2Rn

kP
i=1

�i

264
nP
j=1

r(ji)1xj+
nP
j=1

r(ji)2xj

2 +
q

 
nP
j=1

r(ji)1xj�
nP
j=1

r(ji)4xj

!
2(4q�1) �

nP
j=1

cjixj

375
(4.13) s.t. (1� �i)

 
nP
j=1

r(ji)1xj � bi4

!
+�i

 
nP
j=1

r(ji)2xj � bi3

!
� 0,i =

1; q ,

(4.14)
nP
j=1

xj = 1;

(4.15) M1j � xj �M2j ; j = 1; n:
This completes the proof.
Problem (4.12)-(4.15) is a standard multi-objective linear programming prob-

lem. For optimal solution we can used several algorithm of multi-objective pro-
gramming [12, 15].

For q !1 (4.3) we see that lim
q!1

eEw(er) = r1+r2
2 + ���

8 . Thus we get

COROLLARY 4.1 For q ! 1, the weighetd possibilistic mean V aR e¢ -
cient portfolio selection model can be reduce to the following linear programming
problem:

max
x2Rn

kP
i=1

�i

264
nP
j=1

r(ji)1xj+
nP
j=1

r(ji)2xj

2 +
q

 
nP
j=1

r(ji)1xj�
nP
j=1

r(ji)4xj

!
2(4q�1) �

nP
j=1

cjixj

375
s.t. (1� �i)

 
nP
j=1

r(ji)1xj � bi4

!
+�i

 
nP
j=1

r(ji)2xj � bi3

!
� 0,i = 1; :::; k

nP
j=1

xj = 1

M1j � xj �M2j ; j = 1; n:
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