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INTRODUCTION

Neuraminidase (NA) plays an important role in virus
proliferation and infectivity1. Therefore, blocking its activity
generates antiviral effects and neuraminidase is considered as
a highly valid target for the design and development of anti-
influenza drugs because the active site of viral neuraminidase
of both virus A and B is highly conserved in amino acid
sequence variation2.

At the recent time, many Neu5Ac2en-based compounds
have been synthesized and tested for their influenza virus
sialidase inhibitory potential, there are at least 268 compounds
of Neu5Ac2en derivatives have been created by many rese-
archer (www.bindingDB.org). When a set of active ligands is
available, it is possible to compute their shared pharma-
cophore. After detected of the chemical feature in training set
of active ligands, a pharmacophore can serve as an important
model for virtual screening; Pharmacophore-based screening
has ability to detect a diverse set of presumed active compounds
with totally different chemical scaffolds, even this increase
the chances that some of the detected compounds will pass all
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the stages of drug development). In this study, the combining
molecular docking-pharmacophore based were the strength
this methods for screening when compared to other ligand
similarity screening approaches lies3.

Both models were employed to screen for neuraminidase
inhibitors from natural product compounds. NADI (Nature
Based Drug Discovery)4 is a database of Malaysian medicinal
plants which aims to be a one-stop centre for in silico drug
discovery from natural products. It provides structural infor-
mation on 3500 different compounds along with the infor-
mation of the botanical sources of plants species that could be
used in virtual screening.

EXPERIMENTAL

Database of bioactive compounds in nature based drug

discovery (NADI): The bioactive compounds of diversity
laboratories collection was filtered by NADI of USM properties
ligands dataset available from http://phd.usm.my/NADI. These
databases contain 3000 compounds of Malaysia natural
product.
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Pharmachopore modeling

Generation of conformation library of bioactive com-

pounds: For the training and test sets molecules, conforma-
tional models representing their available conformational space
were calculated. All molecules were built using the 2D and
3D sketcher of Hyperchem 7.0 and optimized using MM2 in
Hyperchem 7.0. A conformational set was generated for each
molecule using the poling algorithm and the best energy option,
based on CHARMm force field from Discovery studio 2.55.
The molecules associated with their conformational models
were mapped onto the pharmacophore model using the "best
fit" option to obtain the bioactive conformation of each mole-
cule.

Pharmacophore models: Two hundred fifty five confor-
mers was chosen to be minimized as best conformation and
20 kcal/mol was set as energy threshold as global energy mini-
mum for conformation searching6, this protocol is available
in DS 2.5 packages. A good pharmacophore model should
have a high correlation coefficient, lowest total cost and RMSD
values and the total cost should be close to the fixed cost and
away from the null cost. The best pharmacophore model was
further validated by test set method, receiver operating under
curve, fischer's randomization test7 and MUNANA assay
experiment.

Pharmacophore-based virtual screening of nature base

drug discovery (NADI) database: Out of the 3000 molecules
contained in NADI database, 2350 molecules were filtered as
drug-like molecules which were then converted into separate
catalyst libraries. Using the ligand pharmacophore mapping
protocol, the 'best mapping' was performed with the 'rigid
fitting method' and maximum omitted features were set to zero
and two7.

Molecular docking: The neuraminidase protein of
subtype N1 binding with DANA complex (PDB code : 1F8B)8

was used as the target. Docking simulations were performed
with Auto dock9. The auto dock tools (ADT) script was used
to convert the ligand PDB to the pdbq format by adding
Gasteiger charges, checking polar hydrogens and assigning
ligand flexibility. In addition, the auto dock tools was also
performed to prepare the protein targets for the simulations.
Using auto dock tools interface, the Kollman charges were
added for the macromolecule and a grid box of 60 × 60 × 60
points, with a spacing of 0.375 Å, centered on the binding site
for the co-crystallized ligand (26.507; 17.972; 57.828) was
setup for auto grid and auto dock calculations.

MUNANA assay: Chlorogenic acid and caffeic acid from
coffee seeds and quinic acid (Acros Organic®) was utilized in
assay as neuraminidase inhibitors. The assays were carried
out on the bacterial neuraminidase. The procedure of assay
was referred to Hurt10.

RESULTS AND DISCUSSION

We have collected a total 126 compounds from different
literature11-17. Based on principles structural diversity and
activity range of the training set compounds, we have chosen
strictly for the 26 compounds used as training set.

3D-QSAR Pharmacophore model: The 10 hypotheses
were produced using hypo refine run in 3D-QSAR pharma-

cophore DS 2.5 packages The best hypothesis hypo 2 (Fig.
1a) was employed in virtual screening tools, because this model
has requirement validity (statistical, test set and receiver opera-
ting under curve analysis), is characterized by the lowest total
cost value (92.055), the highest cost difference (84.395), the
lowest RMSD (1.197) and the best correlation coefficient
(0.944651). The fixed cost and null cost are 97.2168 and
197.498 bits, respectively. Hypo2 contains five features: one
hydrogen-bond donor (D), two hydrophobic aliphatic moiety
(Hy), one negatively ionizable (N) and one positive ionizable
(P). Two excluded volumes are also involved in hypo2. The
3D space and distance constraints of these pharmacophore
features are shown in Fig. 1b.

(A) (B)

(C) (D)

Fig. 1. Feature of Best Pharmacophore with Validation by Hyporefine Run
in DS 2.5. (A) The best HypoRefine pharmacophore model, Hypo2.
(B) 3D spatial relationship and geometric parameters of Hypo2.
(C) Hypo2 aligned with the most-active compound 1 (IC50: 0.5
nM). (D) Hypo2 aligned with the least active compound 24 (IC50:
128825 nM). Pharmacophore features are color coded; magenta:
hydrogen-bond donor (HBD), blue - hydrophobic feature (Hy), dark
blue - negative ionizable(N), and red - positive ionizable (P)

Validation of pharmacophore model

Fischer randomization test: Fischer randomization is
provided in the DS 2.1 package to evaluate models of best
pharmacophore. The program used is CatScramble module
within catalyst. This statistical program in CatScramble mixes
up activity values of all training set compounds to check
whether there are strong correlation between the structure and
activity. The confidence level was set to 95 % to produce a
total 19 random spread sheets were built. The results are shown
in Fig. 3. Fig. 2a showed that the correlation (r2) of all pharma-
cophore models generated using the 19 random spreadsheet
are much lowest than the correlation of corresponding original
pharmacophore models and Fig. 2b showed that total costs of
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19 random spread sheet are much higher than total costs of
best pharmacophore. These results provide confidence on our
pharmacophore.

Test set and receiver operating under curve analysis

methods: All the test set molecules were prepared by the same
way as that for the training set molecules. Hypo2 was applied
against the 96 test set compounds which gave a correlation
coefficient of between experimental and estimated activities
as shown in Fig. 3a.

Model hypo2 illustrated good overall performance with an
area under curve value of 0.907 (Fig. 3b), respectively. In general,
the greater the area under curve, the more effective the virtual
screening workflow in discriminating active from inactive
compounds. In terms of probabilities, an area under curve of 0.9
means that a randomly selected active molecule has a higher
score than a randomly selected inactive 9 times out18 of 10.

Virtual screening of NADI based on feature pharma-

cophore model: The validated Hypo2 of best model were
applied as a 3D structural query for screening potent compounds
from NADI database. A total of 3500 compounds were screened
from the first screening. The hit compounds were further screened
by using Lipinski's rule of five to make them more drug-like19

and a total of 2350 molecules passed this filtration. Finally, 167
compounds were mapped at this screening by optimizing the
minimum predicted activity to 0.41 mM (MSC2273) with two
missing features (Maximum  Omitted: 2).

According to the results, there are no compounds of NADI
which has high affinity to the fifth feature into one hydrogen
bond donor, NI and PI and two Hy by set maximum omitted
zero.

All compounds mapped have carboxylic acid and
hydroxyl groups. Such as sialic acid, carboxylic group of NADI
compounds was mapped into negative ionizable and hydroxyl
group was mapped onto hydrogen bond donor feature. Actu-
ally, HBA mapped into carbonyl or enol groups of compounds
NADI and aromatic moiety and alkyl chain mapped into
hydrophobic feature.

Molecular docking simulation study: Based on hits of
screening of 3D structural query pharmacophore, the 167
compounds were docked into the inhibitor binding site of
neuraminidase  by using within Autodock 3.0.5. The crystal
structure of neuraminidase complex-DANA (PDB entry:
1F8B)8 was taken from the RSCB protein data bank. Free
energy scoring function of Autodock was used as the ranking
function since it performed better than others in a pre-
evaluating process. Docking simulation of NADI compounds
on N1 showed inverse orientation relative to DANA.

MSC927 was found that binding interaction into N1
(1F8B) have similarity with DANA X-ray, although have fit
value (mapping) and free energy docking less than better if be
compared with Oseltamivir (2HU4)20 and DANA X-ray
(1F8B). MSC927 also have mapping similar with OSTM, but
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MSC927 doesn't has positive ionizable feature. Fig. 4a and 4b
show MSC927 and OSTM interaction at N1. Based on
chemical structure, MSC927 or 3-O-Caffeoylquinic acid is
ester formed between coffee acid and quinic acid in secondary
metabolites of plants21. MSC927 have three isomer position
at 3, 4 and 5 which attack -OH of quinic acid22.

In Fig. 4a, cyclopentenone ring of DANA (1F8B) (pink)
coincide well with cyclopentane of MSC927, whereas in Fig.
4b explained that -COOH at oseltamivir (orange) and MSC927
(colourful) given same interaction with Arg371, Arg118 and
Arg292 and N-acetyl of OSTM and OH-C4 of MSC927
interact into Asp151 and Glu227 residue, while OH-C5 in
MSC927 has same interaction with NH3

+-OSTM into Glu119
and Asp151. Oseltamivir at isopentyl groups and moiety of
MSC927 given strong hydrophobic interaction into Glu 276,
Glu 277, Ala 246 and Arg 224, whereas catechol  moiety of
MSC927 interacts into most broadly of hydrophobic residues
such as Ser245, Gly224 and Asn221. Fig. 4b explained that
MSC927 doesn't have positive ionizable pocket (purple), but
provides a large hydrophobic pocket (red). Aromatic moiety
leads to hydrophobic pocket (red) and -dihydroxy of catechol
interact with Ala246

Bioassay for verification simulation models: In analysis
of combining results pharmacophore-docking screening, the
most interesting active hits are MSC1713 and MSC927. Both
compounds have high fit value into model pharmacophore.
Molecular docking MSC1713 and MSC927 are almost same,
since the compounds gave same interaction into neuramini-
dase. In this study, the glycosides of these compounds play an
important role in the affinity fitting of features models.  Carbo-
xylate derivative of glycoside was captured by negative
ionizable feature of the both models, hydroxyl of glycoside
attached into hydrogen bond donor or HBA features.  Aromatic
ring of catechol moiety fitted into hydrophobic  feature of
model, while alkyl groups of catechol side fitted into hydro-
phobic feature of model even position of catechol moiety as
hydrophobic feature is similar with isopentyl of OST
(GS4071).

As described by Luo et al.23, carboxylate acid of MSC927
binds well with triad arginine of neuraminidase as well as sialic
acid. Luo et al.23 also explains that chlorogenic acid or MSC927
have potent for NAI of H5N1 (2HUO) because FEB of this
compound lower than OST. However in this study, FEB of
OST (-10.99 kcal/mol ) is less than MSC927 (-9.88 kcal/mol).
Cation-piinteraction (orange line) might occur between ring
aromatic of catechol moiety with positive charges of Arg152.
Hydrophobic interaction was seemed between chain of caffeic
acid moiety and Ser246, Ile222 and Arg224 of neuraminidase
binding site, as well as the isopentyl of OSTM with same
residue of neuraminidase.

According to the results above, DANA, chlorogenic acid
(MSC927), caffeic acid (MSC94) and quinic acid (MSC928)
were purchased from ACROS®, asiatic acid (MSC517)
(SIGMA®) and kuguacin R (Tianjin) to verify our models that
these compounds have role in inhibiting of neuraminidase
activity. Table-1 showed that all compounds have capability
to inhibit neuraminidase activity of C. perfringens.
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TABLE-1 
COMPARISON OF IC50 VALUE BETWEEN EXPERIMENT AND in silico PREDICTION 

No. Compounds2 
IC50 (Virus-N1)  

experiments (µM) 
IC50 predicted 

(T2S202) (µM)1 
Fit value1 AD (3B7E) FEB2 

1 DANAB 12.18 9.3012 7.80440 -9.21 
2 MSC 517 16.4 15.1823 7.59166 -11.44 
3 NSC 99660 2.9 17.85 7.52145 -8.49 
4 NSC 5069 51.288 19.45 7.48408 -14.94 
5 NSC 45527 3.2854 25.85 7.36054 -8.29 
6 MSC 927 32.69 27.36 7.67081 -9.27 
7 NSC 609699 270 35.04 7.2284 -9.84 
8 NSC 112257 350 35.51 7.22271 -11.71 
9 NSC 10458 190 37.96 7.19372 -11.7 

10 NSC 65689 760 60.78 6.98924 -10.81 
11 MSC 94 109.8 108.84 6.58919 -9.19 
12 NSC 43413 650 152.00 6.58981 -11.93 
13 NSC 80997 2541.3 153.00 6.58956 -12.89 
14 NSC 16087 540 153.00 6.58812 -11.40 
15 MSC 2307 1,880 447.05 6.12264 -11.26 
16 NSC 202386 1115.9 892 5.82271 -12.01 
17 NSC 45384 1613.9 1060 5.74948 -9.93 
18 NSC 146771 2953.1 1400 5.6254 -9.35 
19 MSC 928 208.48 108.41 7.51884 -7.77 
20 NSC 1614 16239 2580 5.36145 -13.24 
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