Epithermal Gold-Silver Mineralization of the Kitami Metallogenic Province, Hokkaido, Japan

Euis T. YUNINGSIH^{1,2} and Hiroharu MATSUEDA²

^{1.} Faculty of Geology, Padjadjaran University, Bandung, West Java, Indonesia ²The Hokkaido University Museum, Hokkaido University, Japan

1. Introduction

The gold-silver mineralization at the Kitami metallogenic province, located at the northeastern Hokkaido, Japan (Figure 1) is occurred in the Neogene Tertiary age. The goldsilver deposits in this district were one of the valuable mining districts in Japan. Epithermal ore deposits of the gold-silver mines in this district present similarities in mineral silver vein-type deposits in the Kitary metril compositions, vein features, and also their host rocks.

2. Regional Geological Setting

Gold, silver, copper and mercury hydrothermal mineralization of the Kitami region at northeastern Hokkaido is related to Middle to Late Miocene back-arc volcanism of the Kuril arc (Watanabe, 1995, Figure 2). The mineralization is mostly in the form of vein but minor disseminated and Kuroko-type deposits were also identified in the Kitami region. Veins-type mineralization strikes mainly in the E-W or NE-SW direction. Strike uniformity in the Kitami region resulted by the existence of constant stress fields prevailing during mineralization (Horikoshi, 1983). Based on paired E-W to ENE-WSW right-lateral and WNW-ESE left-lateral strike-slip shear fractures in the Kitami region, Watanabe (1986) suggested that the region had experienced an E-W trending compressive stress.

The basement rocks of Cretaceous age in this area are the Hidaka group comprising chiefly sandstone and shale, intercalated with conglomerate, acidic tuff, chert, and limestone. The Neogene Tertiary system is composed principally of the middle Miocene Konomai, middle to late Miocene Tomeoka and Shanafuchi (or Shakinzawa) and Quaternary Sawaki Formation in ascending order. Table 1 shows the general geological formations in Central Kitami.

province, Hokkaido, Japan (modified after Maeda, 1990).

3. Kitami Metallogenic Province	Table 3. Go some ecor	old and si nomically	lver prod deposit	uction of s in the
The Kitami metallogenic province is divided	Kitami Prov	ince (Ishi	hara et al	., 2000).
into action a the provinces (Linearbinson 1001)	Mines	Au (Ton)	Ag (Ton)	Ag/Au
into seven sub-provinces (Urashima, 1961)	Konomai	73.181	12243	17.0
i e the western Kitami Daisetsu Rasement	Hokuryu	2.924	11.268	3.85
i.e. the western Kitami, Daisetsu Dasement,	Kitano-o	2.916	2.503	0.86
Spinal Kitami, Kitami-Tokachi, Central	Numano-ue	1.405	94.149	67.0
	Sanru	1.340	8.127	6.07
Kitami, Abashiri, and Shiretoko mining	Ikutawara	0.505	3.938	7.80
districts. The prevince had preduced red	Tokoro	0.092	2.321	25.2
aistricts. The province had produced gold,	Muka	0.186	0.814	4.38
silver conner lead zinc mercury etc. and	Saroma	0.162	0.766	4.73
Silver, copper, lead, zinc, mercury etc., and	Ryuo	0.100	0.855	8.55
especially is known as a gold field (Table 3).				

Figure 4. Photographs of some gold-silver ore from Sanru deposit, arrows show the black band containing gold-silver minerals.

4. Ore Mineralogy

Identified gold-silver minerals from the Honpi and Juji-hi veins of Sanru mine with ore microscope and electron probe microanalyzer are aguilarite [Ag₄SeS], naumannite [Ag₂Se], miargyrite [AgSbS₂], pyrargyrite [Ag₃SbS₃], stephanite [Ag₅SbS₄], polybasite [(Ag,Cu)₆(Sb,As)₂S₇] [Ag₉CuS₄], acanthite [Ag₂S], electrum [Au,Ag], stromeyerite [CuAgS], and silver **[** for the precipitation of selenides and Se-bearing minerals from the Sanru deposit. bearing tetrahedrite associated with clausthalite [PbSe], chalcopyrite[CuFeS₂], marcasite [FeS₂], pyrite [FeS₂] and sphalerite [ZnS] (Figure 5). On the other hands, those from Konomai are chalcopyrite, sphalerite, pyrite, marcasite, galena, acanthite, aguilarite, naumannite, pearceite $[(Ag_9CuS_4)(Ag,Cu)_6(As,Sb)_2S_7]$, polybasite, pyrargyrite, and stephanite with some secondary minerals of hematite, limonite and covellite (Figure 6).

(Urashima)	, 1957).
Quarternary	Alluvial and terrace deposits. Sawaki formation - volcanic ash.
Neogene Tertiary	Syanafuchi group Syanafuchi formation - tuff. Syanafuchi formation - basalt, rhyolite, tuff, and conglomerate. Rhyolite and andesite. Tuff formation. Tuff and mudstone formation. Gray shale formation. Black shale formation.
Mesozoic	Granite. Yubetu group - black shale and sandstone. Hidaka group - black slate, sandstone, schalstein, and diabase.

deposits from the northeastern Hokkaido (modified after Ishihara et al., 2000).

Table 2. Ages of mineralization and the related rhyolites in some deposits in the Kitami Province.

Name of	Age of	Age of the	
Ore Deposits	Mineralization	Related Rhyolite	
Sanru	12.4±0.6 Ma*	12.1±0.6 Ma****	
Konomai	12.9±0.4 Ma**	12.0±0.6 Ma****	
Numano-ue	12.7±0.3 Ma***	12.0±0.6 Ma*****	
Ryuo	7.7±0.2 Ma**		
Muka	6.6±0.2 Ma**		
Saroma	5.3±0.5 Ma**		
*Sugaki & Isobe ****Koshimizu & Kir	(1985), **Maeda (m(1987).	(1990), ***MITI (1994)	

Figure 2. Tectonic setting of the Hokkaido and location of the Kitami region. Names of some major hydrothermal deposits are noted as 1 Hokuryu, 2: Sanru, 3: Tokusei, 4: Itomuka, 5: Numano-ue, 6: Konomai, 7: Kitami, 8: Harutomi, 9: Kitano-o. (Modified after Watanabe, 1996).

The mineralization ages of epithermal gold-silver vein-type deposits in the Kitami metallogenic province have been studied by Maeda (1990) and Watanabe (1996), based on the K-Ar dating of the vein adularia and quartz mixtures as described in Table 2.

Gold-silver deposits of the northeastern Hokkaido have a wide range of δ^{34} S such as -9.0 to +9.0 per mil (Figure 3). The δ^{34} S values are especially low (-9.0 ~ 0.7%) where important ore deposits of +10 Konomai, Hokuryu, Numano-ue and Sanru are distributed. Ishihara et al. (2000) concluded that these low $\delta^{34}S$ values may indicate the existence of reduced-series volcanic rocks in these regions.

5. Physicochemical Condition of Ore Deposition

Phase relation between temperature, sulfides and selenides proposed by Simon and Essense (1996) is applied to estimate the variations of the physicochemical conditions

Frequency

		Paragenetic	
Mineral	Chemical Formula	Banded Quartz	
Naumannite	Aq ₂ Se		
Aquilarite	Aq ₄ SeS		
Clausthalite	PbSe	-	
Arsenopyrite	FeAsS		
Miargyrite	AqSbS ₂		
Stephanite	Aq ₅ SbS ₄		
Pyrargyrite	Aq ₃ SbS ₃		
Polybasite	[(AqCu) ₆ (AsSb) ₂ S ₇][(Aq ₉ CuS ₄)		
Tetrahedrite	(Cu,Fe,Ag,Zn) ₁₂ Sb ₄ S ₁₃		
Acanthite	Ag ₂ S	-	
Chalcopyrite	CuFeS ₂	10	
Galena	PbS	-	
Electrum	Au,Ag		
Pyrite	FeS ₂		
Marcasite	FeS ₂		
Sphalerite	ZnS		
Stromeverite	CuAqS		
		Paragenetic	
Mineral	Chemical Formula	Quartz vein	
Vaumannite	Aq ₂ Se)	
Aquilarite	Aq ₄ SeS		
Stephanite	Aa ₅ SbS ₄	-	
Pyrargyrite	Aq ₃ SbS ₃		
Polybasite	[(AqCu) ₆ (AsSb) ₂ S ₇][(Aq ₉ CuS ₄)		
Pearceite	$(Aa_9CuS_4)(Aa,Cu)_6(As,Sb)_2S_7$		
Acanthite	Ag ₂ S		
Chalcopyrite	CuFeS ₂		
Electrum	Au,Aq		
Galena	PbS	ь	
Pvrite	FeS ₂		
Sphalerite	ZnS –		

	Figure 5. Photomicrogra	phs
	of gold-silver minerals	and
	their association from	the
	Sanru deposits.	
1	Abbreviations:	
١.	Act =acanthite	
- 8	Agu =aguilarite	
-	Asp =arsenopyrite	
5	Clau=clausthalite	
m	Cpy =chalcopyrite	
	Elm =electrum	
	Gn =galena	
	Ma =marcasite	
	Mia =miargyrite	
	Nau =naumannite	
4	Py =pyrite	
	Pyr =pyrargyrite	
	Stp =stephanite	
*	Sph =sphalerite	
	• •	

Figure 6. Photomicrographs of gold-silver minerals and their association from the Konomai deposits. Abbreviations: Pe = pearceite Po = polybasite See figure 5 for other minerals abbreviation name.

> **-90ML** Konomai △-120ML 102 △-120ML 155

Figure 8. Log fS_2 versus temperature conditions for the mineralization at the Sanru deposit (left). Log fS_2 versus log fS_2 diagram indicating equilibria between selenides and sulfides of Sanru deposit at 200°C, in vapor saturation.

6. Fluid Inclusion Study

Fluid inclusion study of quartz samples from Sanru deposit from -30ML, -60ML, -120ML, -150ML and -270ML concluded the homogenization temperature are in the ranges of 253° - 331°C from the shallower to the deeper part (Figure 9). While, the temperatures required for the formation of the quartz of the Konomai mine based on fluid inclusions study are slightly lower comparing to

Figure 7. Histogram of Iron contents (mol.% FeS) in sphalerite (left) and graphic of Au-Ag content (atm.%, right) in electrum of ore samples from Sanru and Konoma deposits.

Au vs Ag

■ Konomai

Iron content in sphalerites from both Sanru and Konomai is low (in the ranges of 3.1 - 6.5 and 0.3 - 2.2 mol.% FeS, Figure 7/left). Electrum from Sanru has slightly higher silver content (52 - 88 atm.%) comparing to electrum from Konomai (38 - 63 atm.%, Figure 7/right).

Homogenization temprature (T_k, °C)

Sanru, in the ranges of 132°C - 267°C from the

early to later stage (Takashima, 1954).

Figure 9. Temperatures formation of Sanru mineralization estimated from fluid inclusions.

7. Conclusions

The selenides minerals are dominated in the mostly epithermal deposits in the Kitami metallogenic province. The electrum, aguilarite and naumannite are the main Au-Ag minerals in the Sanru and the Konomai mines. No minerals which contain tellurium as main compositions of the minerals have been found at the most of mines in Kitami metallogenic province including in Sanru and Konomai samples, though such minerals often found in the ore deposits of southwestern Hokkaido. Geological setting, intrusions and host rocks might be affected to the ore mineralization in this area.

Acknowledgement

A part of this research is supported by Postdoctoral Fellowship for Foreign Researchers Program funded by JSPS (Japan Society for the Promotion of Science).