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Collision-Induced Melting in Collisions of Water
Ice Nanograins: Strong Deformations
and Prevention of Bouncing

Maureen L. Nietiadi1, Philipp Umstätter1, Iyad Alabd Alhafez1, Yudi Rosandi2 ,

Eduardo M. Bringa3, and Herbert M. Urbassek1

1Fachbereich Physik und Forschungszentrum OPTIMAS, Universität Kaiserslautern, Kaiserslautern, Germany, 2Department
of Geophysics, Universitas Padjadjaran, Jatinangor, Sumedang, Indonesia, 3CONICET and Facultad de Ciencias Exactas y
Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina

Abstract Collisions between ice grains are ubiquitous in the outer solar system. The mechanics of such
collisions is traditionally described by the elastic contact theory of adhesive spheres. Here we use molecular
dynamics simulations to study collisions between nanometer-sized amorphous water ice grains. We
demonstrate that the collision-induced heating leads to grain melting in the interface of the colliding
grains. The large lateral deformations and grain sticking induced considerably modify available macroscopic
collision models. We report on systematic increases of the contact radius, strong grain deformations, and
the prevention of grain bouncing.

1. Introduction

In the outer solar system, ice particles are ubiquitous (Gudipati & Castillo-Rogez, 2013); they appear as inter-
planetary dust particles (Grün, 2007; Tielens, 2005), in planetary rings (Esposito, 2010), and in the dust tails of
comets (Bentley et al., 2016; Langevin et al., 2016). In the early history of the solar system, they contributed to
the protoplanetary disk from which ultimately planets, moons, and other bodies of the solar system emerged
(Blum, 2010; Birnstiel et al., 2016). Collisions between such particles may lead to particle agglomeration or
fragmentation and thus determine their size distribution (Bridges et al., 1996; Dominik & Tielens, 1997). In
addition, also silicate dust particles may be covered by an ice layer the properties of which will be relevant for
the collision outcome.

The description of grain collisions is usually based on the contact mechanics of elastic adhesive bodies, such
as the Johnson-Kendall-Roberts (JKR) theory (Johnson et al., 1971). For the case of macroscopic ice grains—in
the range of millimeters or above—this approach allows to describe experimental data successfully (Bridges
et al., 1996; Higa et al., 1998; Schäfer et al., 2007; Krijt et al., 2013).

Wettlaufer (2010) proposed that ice melting can drastically influence the collision dynamics of water ice grains.
He focused on collisions of larger bodies, and of small grains with large, meter-sized bodies. He found that
apart from the low-speed fusion and the higher-speed bouncing regimes, at even higher speed the collision
partners may agglomerate again (so-called reentrant agglomeration regime) due to collisional melting or
other solid-solid phase transformations that dissipate collisional energy. His results are relevant for the physics
of the protoplanetary disk as a model to prevent the so-called accretion bottleneck (Armitage, 2010), which
lets meter-sized agglomerates lose contact with the disk and spiral fast into the central star thus preventing
planet formation; due to the collisional fusion mechanism, meter-sized agglomerates can grow fast enough
to avoid this bottleneck.

Collisions between nanoscopic ice grains, on the other side, are relevant for the initial stages of grain growth
in the protoplanetary disk beyond the snow line, where small grains may grow through collisional accretion
to larger objects (Chokshi et al., 1993; Dominik & Tielens, 1997). Collisional melting and the suppression of the
bouncing regime may result in a faster buildup of larger agglomerates.

Here we explore to what extent the collision of nanoscopic ice particles can be described by macroscopic
contact theory. Using molecular dynamics (MD) simulation, we show that collision-induced heating may melt
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